Optimal Operation of Motor/Turbine Processes in Utility Plant

유틸리티 플랜트 모터/ 터빈 공정의 최적운전

  • Oh, Sanghun (Department of Chemical Engineering, Hanyang University) ;
  • Yeo, Yeong Koo (Department of Chemical Engineering, Hanyang University)
  • 오상훈 (한양대학교 화학공학과) ;
  • 여영구 (한양대학교 화학공학과)
  • Received : 2007.01.17
  • Accepted : 2007.02.13
  • Published : 2007.06.30

Abstract

To achieve safe operation and to improve economics it is imperative to monitor and analyse demand and supply of utilities and to meet utility needs in time. The main objective of motor/turbine processes is to manipulate steam and electricity balances in utility plants. The optimal operation of motor/turbine processes is by far the most important to improve economics in the utility plant. In order to analyse motor/turbine processes, we need steady state models for steam generation equipments and steam distribution devices as well as turbine generators. In addition heuristics concerning various operational situations are required. The motor/turbine optimal operation system is based on utility models and operational knowledgebase and provides optimal operating conditions when the amount of steam demand from various steam headers is changed frequently. The optimal operation system also produces optimal selection of driving devices for utility pumps to reduce operating cost.

공장의 안정적인 운전과 경제성을 위해서는 유틸리티의 수급을 정확히 파악하고 공급하는 것이 중요하다. 모터/터빈 공정은 유틸리티 플랜트에서 수증기와 전력의 균형을 조절하여 주며 이의 최적 운전은 유틸리티 플랜트의 경제성에 지대한 영향을 미친다. 모터/터빈 공정의 분석을 위해서는 먼저 수증기 발생장치와 수증기 분배장치 전반에 대한 모델의 규명이 요구됨은 물론 제반 상황에 대한 운전지식이 필요하다. 유틸리티 관련 장치의 모델과 운전지식 베이스를 기반으로 구성되는 모터/터빈 운전 최적화 시스템에서는 다양한 등급의 수증기 헤더에서 요구되는 수증기 양이 변할 때 각 유틸리티 설비의 최적 운전조건을 제시하여 주며 수증기 요구량의 변화에 따라 유틸리티 펌프의 구동원이 적절하게 선택되고 이에 따라 전체 유틸리티 플랜트의 조업 경비도 절감할 수 있다.

Keywords

Acknowledgement

Supported by : 에너지관리공단

References

  1. Maria, T. V. R., 'Automate Steam Balance, ' Hydrocarbon Process., 56(7), 111-114(1977)
  2. Pilavakis, P. A. and Perrin, M. A., 'Energy and Capital Savings in a Steam Distribution System,' Hydrocarbon Process., 6(7), 89-93(1983)
  3. Bouilloud, Ph., 'Compute Steam Balance by LP,' Hydrocarbon Process., 48(7), 127-128(1969)
  4. Nath, R., Libby, D. J. and Duhon, H. J., 'Joint Optimization of Process Units and Utility System, ' Chem. Eng. Prog., 82(5), 31-38 (1986)
  5. Poje, J. B. and Smart, A. M., 'On-line Energy Optimization in a Chemical Complex,' Chem. Eng. Prog., 82(5), 39-41(1986)
  6. Stacy, G. D., Gaines, L. D. and Collis, F., 'Optimize Steam System by Computer,' Hydrocarbon Process., 60(10), 75-81(1981)
  7. Clark, J. K. Jr. and Helmick, N. E., 'How to Optimize the Design of Steam Systems,' Chem. Eng. Prog., 76(11), 116-128(1980)
  8. Diaz, M. S. and Bandomi, J. A., 'A Mixed Integer Optimization Strategy for a Large Scale Chemical Plant in Operation,' Computers Chem. Engng, 20(5), 531-545(1996) https://doi.org/10.1016/0098-1354(95)00209-X
  9. Nishio, M., Shiroko, K. and Umeda, T., 'Optimal Use of Steam and Power in Chemical Plants,' Ind. Eng. Chem. Process Des. Dev., 21(4), 640-646(1982) https://doi.org/10.1021/i200019a017
  10. Petroulas, T. and Reklaitis, G. V., 'Computer-Aided Synthesis and Design of Plant Utility Systems', AIChE, 30(1), 69-78(1984) https://doi.org/10.1002/aic.690300112
  11. Maia, L. O. A., Vidal de Carvalho, L. A. and Qassim, R. Y., 'Synthesis of Utility Systems by Simulated Annealing,' Computers Chem. Engng, 19(4), 481-488(1995) https://doi.org/10.1016/0098-1354(94)00061-R
  12. Nishio, M., Itoh, J., Shiroko, K. and Umeda, T., 'A Thermodynamic Approach to Steam-Power System Design, ' Ind. Eng. Chem. Process Des. Dev., 19(2), 306-312(1980) https://doi.org/10.1021/i260074a019
  13. Soterios A., Papoulias, I. E. G., 'A Structual Optimization Approach in Process Synthess-I', Computers Chem. Engng. 7(6), 695-706(1983) https://doi.org/10.1016/0098-1354(83)85022-4
  14. Lindsley, D., Boiler Control Systems, McGraw-Hill(1991)
  15. Harrell, G., Steam System Survey Guide, DOE(U.S.)(2002)
  16. Lee, W. O., 'A Study on the Optimal Operation and Modelin of Utility Process,' Hanyang Univ.(2002)
  17. Yi, H. S., 'The Development of Expert System for Steam Distribution in Utility Plant,' Hanyang Univ.(2002)
  18. Yoo, Y. H., Yi, H. S., Yeo, Y. Y., Kim, M. K., Yang, H. S. and Chung, K. P., 'Modeling and Simulation of Distribution Systems in a Petrochemical Plant,' KJChE, 13(4), 348-392(1996)