슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections

  • 투고 : 2006.08.02
  • 발행 : 2007.07.30

초록

풍하중 및 지진하중등 횡하중이 작용하는 무량판 슬래브는 전단파괴와 같은 취성파괴를 지연시키기 위해서 충분한 전단강도와 연성능력을 보유하여야 한다. 본 연구에서는 반복 횡하중을 받는 무량판 슬래브의 전단강도와 변형성능을 고찰하기 위하여, 무보강 및 전단 보강된 총 4개의 내부기둥-슬래브 접합부를 실험하였다. 실험결과, 전단보강 슬래브의 이방향 전단강도는 무보강 슬래브보다 최대 1.5배까지 증가시켜 적용하는 콘크리트구조설계기준(KCI)과 ACI 318-02 기준은 중력하중만이 작용하는 경우에는 적절하나 조합하중 특히 횡하중의 영향이 클 경우에는 매우 불안전측 이었다. 한편, 변형성능 측면에서 슬래브-기둥 접합부의 1.5% 횡변위 성능을 확보하기 위하여 이방향 전단강도에 대한 중력하중비를 40%이하로 제한한 ACI-ASCE 352 위원회의 권고는 안전측인 것으로 나타났다.

In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

키워드

참고문헌

  1. 한국콘크리트학회, 대한건축학회, "콘크리트구조설계기준", 1999.
  2. Robertson, I.N., Tadashi Kawai, James Lee, and Brian Enomoto, "Cyclic Testing of Slab-Column Connections with Shear Reinforcement", ACI Structural Journal, V. 99, No. 5, 2002, pp. 605-613.
  3. Elgabry, A.A. and Amin Ghali, "Tests on Concrete Slab-Column Connections with Stud-Shear Reinforcement Subjected to Shear-Moment Transfer", ACI Structural Journal, V. 84, No. 5, 1989, pp. 433-442.
  4. ACI Committee 318, "Building Code Requirements for Reinforced Concrete(318-02) and Commentary (318R-02)", American Concrete Institute, Framington Hills, MI, 2002.
  5. Sozen, M.A., "Review of Earthquake Response of Reinforced Concrete Building with a View to Drift Control", State of the Art in Earthquake Engineering. 7th World Conference on Earthquake Engineering, Istanbul, 1980, pp. 119-174.
  6. Pan, A.D. and Moehle, J.P. "Lateral Displacement Ductility of Reinforced Concrete Flat Plates", ACI Structural Journal, V. 86, No. 3, 1989, pp. 250-258.
  7. ACI-ASCE Committee 352, "Recommendation for Design of Slab-Column Connections in Monolithic Reinforced Concrete Structures(ACI 352.1R-89)", ACI Structural Journal, V. 85, No. 6, 1988, pp. 675-696.
  8. Robertson, I.N. and Durrani, A.J. "Gravity Load Effect on Seismic Behavior of Interior Slab-Column Connections", ACI Structural Journal, V. 89, No. 5, 1992, pp. 37-45.
  9. Pilakoutas, K. and Li, X. "Alternative Shear Reinforcement for Reinforced Concrete Flat Slabs", Journal of Structural Engineering, V. 129, No. 9, 2003, pp. 1164-1172. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1164)
  10. The CEB/fib Task Group, "Punching of structural concrete slabs", The international Federation for Structural Concrete(fib), 2001.
  11. Islam, S., and Park, R, "Tests on Slab-Column Connections with Shear and Unbalanced Flexure", Journal of the Structural Division, V. 102, No. ST3, 1976, pp. 549-568.
  12. Baul D. Bertero, V.V. Bertero, "Performancebased seismic engineering : the need for a reliable conceptual comprehensive approach," Earthquake Engineering and Structural Dynamics, 2002, pp. 627-650.