Morphology of Methane/Propane Clathrate Hydrate Crystal

메탄/프로판 포접 하이드레이트 결정의 성장 특성

  • Lee, Ju Dong (Advanced Manufacturing Technology team, Korea Institute of Industrial Technology) ;
  • Englezos, Peter (Department of Chemical and Biological Engineering, University of British Columbia) ;
  • Yoon, Yong Seok (Department of Mechanical Engineering, Dongguk University) ;
  • Song, Myungho (Department of Mechanical Engineering, Dongguk University)
  • 이주동 (한국생산기술연구원 차세대생산공정팀) ;
  • ;
  • 윤용석 (동국대학교 기계공학과) ;
  • 송명호 (동국대학교 기계공학과)
  • Received : 2007.03.18
  • Accepted : 2007.05.05
  • Published : 2007.08.31

Abstract

Morphology of methane/propane clathrate hydrate crystal was investigated under different undercooling conditions. After the water pressurized with compound guest gas was fully saturated by agitation, medium within the vessel was rapidly undercooled and maintained at the constant temperature while the visual observations using microscope revealed detailed features of subsequent crystal nucleation, migration, growth and interference occurring within liquid pool. The growth of hydrate was always initiated with film formations at the bounding surface between bulk gas and liquid regions under all tested experimental conditions. Then a number of small crystals ascended, some of which settled beneath the hydrate film. When undercooling was relatively small, some of the settled crystals slowly grew into faceted columns. As the undercooling increased, the downward growth of crystals underneath the hydrate film became dendritic and occurred with greater rate and with finer arm spacing. The shapes of the floating crystals within liquid pool were diverse and included octahedron and triangular or hexagonal platelet. When the undercooling was small, the octahedral crystals were found dominant. As the undercooling increased, the shape of the floating crystals also became dendritic. The detailed growth characteristics of floating crystals are reported focused on the influences caused by undercooling and memory effect.

메탄/프로판 혼합기체의 포접 하이드레이트를 다양한 과냉 조건 하에서 생성시키며 결정의 성장 특성을 연구하였다. 먼저 내압 용기를 물과 고압의 혼합기체로 충진하고 충분히 교반하여 용액을 포화시킨 후, 내부 온도를 하이드레이트 생성온도 이하로 급격히 떨어뜨리고 이후에는 일정하게 유지하며 하이드레이트 결정의 핵생성, 이동, 성장 및 간섭을 현미경을 통하여 관찰하였다. 수행한 모든 실험조건에서 하이드레이트의 생성은 기체와 액체의 상경계면에서 막의 형태로 시작되었으며, 이후 용기 하부에서 생성된 다수의 소결정들이 부상하여 일부는 막의 밑면에 부착하고 일부는 하이드레이트 막으로부터 자라는 결정과 간섭하며 아래 방향으로 성장하였다. 막 근처에서 성장하는 결정들은, 비교적 작은 과냉 조건에서는 다면 기둥의 형태를 가지며 과냉이 커짐에 따라 형상이 수지상(dendrite)으로 천이하고 성장속도는 증가하며 가지간격은 감소하였다. 액체 영역 내부에서 관찰 된 부유 결정(floating crystals)들은 팔면체, 삼각판 및 육각 판 등 다양한 형태를 보이며, 과냉이 작을수록 팔면체 형태가 지배적이었다. 과냉이 커짐에 따라 부유 결정 역시 수지상으로 천이하며 성장하였다. 상세한 하이드레이트 결정의 성장 특성을 과냉과 기억효과(memory effect; 하이드레이트가 분해된 후에도 액체에 물분자의 입체 그물 결합구조가 잔존하는 현상)가 미치는 영향을 중심으로 기술하였다.

Keywords

Acknowledgement

Supported by : 동국대학교

References

  1. Hammerschmidt, E. G., 'Formation of Gas Hydrate in Natural Gas Transmission Lines,' Ind. Eng. Chem., 26(8), 851-855(1934) https://doi.org/10.1021/ie50296a010
  2. Englezos, P., 'Reviews: Clathrate Hydrates,' Ind. Eng. Chem. Res., 32(7), 1251-1274(1993) https://doi.org/10.1021/ie00019a001
  3. Makogon, Y. F., 'Hydrate formation in Gas-Bearing Layer in permafrost Conditions,' Gas Industry Journal, 5, 14-15(1965)
  4. Makogon, Y. F., 'Natural Gas Hydrate: The State of Study in the USSR and Perspectives for Its Use,' Third Chemical Congress of North America, June, Toronto, Canada(1988)
  5. Kvenvolden, K. A., 'Methane Hydrate - A Major Reservoir of Carbon in the Shallow Geosphere?,' Chemical Geology, 71(1), 41-51 (1988) https://doi.org/10.1016/0009-2541(88)90104-0
  6. Makogon, Y. F., 'Russia's Contribution to the Study of Gas Hydrates,' Annals N.Y. Acad. Scie., 715, 119-145(1994) https://doi.org/10.1111/j.1749-6632.1994.tb38829.x
  7. Englezos, P. and Lee, J. D., 'Gas Hydrate: A Cleaner Source of Energy and Opportunity for Innovative Technologies,' Korean J. Chem. Eng., 22(5), 671-681(2005) https://doi.org/10.1007/BF02705781
  8. Lee, H., Lee, J., Kim, D. Y., Park, J., Seo, Y.-T., Zeng, H., Moudrakovski, I. L., Ratcliffe, C. I. and Ripmeester, J. A. 'Tuning Clathrate Hydrates for Hydrogen Storage,' Nature, 434(7034), 743-746(2005) https://doi.org/10.1038/nature03457
  9. Lee, J. W., Chun, M.-K., Lee, K. M., Kim, Y. J. and Lee, H., 'Phase Equilibria and Kinetic Behaviour of $CO_2$ Hydrate in Electrolyte and Porous Media Solutions: Application to Ocean Sequestration of $CO_2$,' Korean J. Chem. Eng., 19(4), 673-678(2002) https://doi.org/10.1007/BF02699316
  10. West, O. R., Tsouris, C., Lee, S., McCallum, S. D. and Liang, L., 'Negatively Buoyant $CO_2$-Hydrate Composite for Ocean Carbon Sequestration,' AIChE J., 49(1), 283-285(2003) https://doi.org/10.1002/aic.690490127
  11. Seo, Y.-T. and Lee, H., 'Structure and Guest Distribution of the Mixed Carbon Dioxide and Nitrogen Hydrates As Revealed by X-ray Diffraction and 13C NMR Spectroscopy,' J. Phys. Chem. B, 108(2), 530-534(2004) https://doi.org/10.1021/jp0351371
  12. Seo, Y.-T., Moudrakovski, I. L., Ripmeester, J. A., Lee, J.-W. and Lee, H., 'Efficient Recovery of $CO_2$ from Flue Gas by Clathrate Hydrate Formation in Porous Silica Gels,' Environmental Science and Technology, 39(7), 2315-2319(2005) https://doi.org/10.1021/es049269z
  13. Sloan, E. D., Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker, New York(1998)
  14. Ripmeester, J. A., 'Hydrate Research-From Correlations to a Knowledge-based Discipline. The Importance of Structure,' Annal. N.Y. Acad. Scie., 912, 1-16(2000)
  15. Ripmeester, J. A., Tse, J. S., Ratcliffe, C. I. and Powell, B. M., 'A New Clathrate Hydrate Structure,' Nature, 325(6100), 135-136(1987) https://doi.org/10.1038/325135a0
  16. Ripmeester, J. A. and Ratcliffe, C. I., 'Xenon-129 NMR Studies of Clathrate Hydrates: New Guests for Structure II and Structure H,' J. Phy. Chem., 94(25), 8773-8776(1990) https://doi.org/10.1021/j100388a006
  17. Lee, J. D., Susilo, R. and Englezos, P., 'Methane-ethane and Methane-propane Hydrate Formation and Decomposition on Water Droplets,' Chemical Engineering Science, 60(15), 4203-4212(2005) https://doi.org/10.1016/j.ces.2005.03.003
  18. Makogon, Y. F., Hydrates of Natural Gas, Chapter 2, Penn Well, Tulsa, Oklahoma(1981)
  19. Sugaya, M. and Mori, Y. H., 'Behaviour of Clathrate Hydrate Formation at the Boundary of Liquid Water and A Fluorocarbon in Liquid or Vapor State,' Chemical Engineering Science, 51(13), 3505-3517(1996) https://doi.org/10.1016/0009-2509(95)00404-1
  20. Thomas, S. and Dawe, R. A., 'Review of Ways to Transport Natural Gas Energy from Countries Which do not Need the Gas for Domestic Use,' Energy, 28(14), 1461-1477(2003) https://doi.org/10.1016/S0360-5442(03)00124-5
  21. Sakaguchi, H., Ohmura, R. and Mori, Y. H., 'Effect of Kinetic Inhibitor on the Formation and Growth of Hydrate Crystals at a Liquid-liquid Interface,' J. Crystal Growth, 247(3-4), 631-641(2003) https://doi.org/10.1016/S0022-0248(02)02021-3
  22. Udachin, K. A., Ratcliffe, C. I. and Ripmeester, J. A., 'Single Crystal Diffraction Studies of Structure I, II and H Hydrates: Structure, Cage occupancy and Composition,' Journal of Supramolecular Chemistry, 2(4-5), 405-408(2002) https://doi.org/10.1016/S1472-7862(03)00049-2
  23. Koh, C. A., 'Towards a Fundamental Understanding of Natural Gas Hydrates,' Chem. Soc. Rev., 31(3), 157-167(2002) https://doi.org/10.1039/b008672j
  24. Sloan, E. D., 'Clathrate Hydrate Measurements: Microscopic, Mesoscopic, and Macroscopic,' J. Chemical Thermodynamics, 35(1), 41-53(2003) https://doi.org/10.1016/S0021-9614(02)00302-6
  25. Subramanian, S., Ballard, A. L., Kini, R. A., Dec, S. F. and Sloan, E. D., 'Evidence of Structure II Hydrate Formation from Methane+ethane Mixtures,' Chemical Engineering Science, 55(11), 1981-1999(2000a) https://doi.org/10.1016/S0009-2509(99)00389-9
  26. Subramanian, S., Ballard, A. L., Kini, R. A., Dec, S. F. and Sloan, E. D., 'Structural Transitions in Methane+ethane Gas Hydratespart I: Upper Transition Point and Applications,' Chemical Engineering Science, 55(23), 5763-5771(2000b) https://doi.org/10.1016/S0009-2509(00)00162-7
  27. Ballard, A. L. and Sloan, E. D., 'Structural Transitions in Methane+ethane Gas Hydrates-part II: Modeling beyond Incipient Conditions,' Chemical Engineering Science, 55(23), 5773-5782 (2000) https://doi.org/10.1016/S0009-2509(00)00163-9
  28. Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T., Narita, H., Hori, A. and Hondoh, T., 'Coexistence of Structure I and II Hydrates Formed from a Mixture of Methane and Ethane Gases,' Can. J. Phys., 81(1-2), 479-484(2003) https://doi.org/10.1139/p03-030
  29. Uchida, T., Moriwaki, M., Takeya, S., Ikeda, I. Y., Ohmura, R., Nagao, J., Minagawa, H., Ebinuma, T., Narita, H., Gohara, K. and Mae, S., 'Two-step Formation of Methane-propane Mixed Gas Hydrates in a Batch-type Reactor,' AIChE Journal, 50(2), 518-523(2004) https://doi.org/10.1002/aic.10045
  30. Ohmura, R., Shimada, W., Uchida, T., Mori, Y. H., Takeya, S., Nagao, J., Minagawa, H., Ebinuma, T. and Narita, H., 'Clathrate Hydrate Crystal Growth in Liquid Water Saturated with a Hydrate-forming Substance: Variations in Crystal Morphology,' Philosophical Magazine, 84(1), 1-16(2004) https://doi.org/10.1080/14786430310001623542
  31. Ohmura, R., Matsuda, S., Uchida, T., Ebinuma, T. and Narita, H., 'Clathrate Hydrate Crystal Growth in Liquid Water Saturated with a Guest Substance: Observations in a Methane + Water System,' Crystal Growth & Design, 5(3), 953-957(2005) https://doi.org/10.1021/cg049675u
  32. Fleming, M. C., Solidification Processing, McGraw-Hill, New York(1974)
  33. Murowchick, J. B. and Barnes, H. L., 'Effects of Temperature and Degree of Supersaturation on Pyrite Morphology,' American Mineralogist, 72, 1241-1250(1987)