
Journal of the Korean Institute of Industrial Engineers
Vol. 33, No. 1, pp. 86-98, March 2007.

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for
the Traveling Salesman Problem with Time Windows

Byung-In Kim†*

Department of Industrial and Management Engineering,
Advanced Product & Production Technology Center, POSTECH, Pohang 790-784, Korea

시간제약이 있는 외판원 문제를 위한 메타휴리스틱 기법

김 병 인

포항공과대학교 산업경영공학과, 제품생산기술연구소

This paper presents a heuristic algorithm for the traveling salesman problem with time windows (TSPTW). An
iterative insertion algorithm as a constructive search heuristic and a hybrid meta heuristic combining simulated
annealing and tabu search with the randomized selection of 2-interchange and a simple move operator as an
improving search heuristic are proposed. Computational tests performed on 400 benchmark problem instances
show that the proposed algorithm generates optimal or near-optimal solutions in most cases. New best known
heuristic values for many benchmark problem sets were obtained using the proposed approach.

Keywords: Traveling Salesman Problem With Time Windows (TSPTW), Simulated Annealing, Tabu Search,
Meta heuristic, Iterative Insertion Algorithm

1. Introduction

The traveling salesman problem with time windows
(TSPTW) is an extension of the well known traveling
salesman problem (TSP) in which each city (or cus-
tomer or stop) is associated with a time interval
[earliest visit time, latest visit time], called a time
window. Each customer must be visited exactly once
and within the time window. The salesman can arrive
at a customer before the customer’s earliest visit time
and wait until the beginning of the window, but he or
she cannot visit the customer after the customer’s lat-
est visit time. Minimizing the total traveling time and
minimizing the completion time, which includes wait-
ing time at the customers, are the two main objective
functions considered in the literature. In this paper, the

former is considered in order to compare our algo-
rithm with other methods. A mathematical program-
ming model for TSPTW is presented in Calvo (2000).

The TSPTW has various practical applications in-
cluding package delivery, school bus routing, di-
al-a-ride, and automated guided vehicle/overhead hoist
transport scheduling. It is also a sub-problem of the
vehicle routing problem with time windows (VRPTW)
when a cluster-first, route-second approach is used.

The TSPTW is known as a hard problem to solve.
Savelsbergh (1985) constructs an instance of TSPTW
from an instance of the 3-partition problem and proves
that even finding a feasible solution is an NP-Complete
problem. Thus, exact methods are limited to instances
of small numbers of customers and narrow time
windows.

In this paper, an iterative insertion algorithm, and a

†Corresponding author : Byung-In Kim, Department of Industrial and Management Engineering, POSTECH, San 31 Hyoja-dong Nam-gu
Pohang 790-784, Korea, Tel：+82-54-279-2371, Fax：+82-54-279-2870, E-mail：bkim@postech.ac.kr

 Received June 2006; revision received September 2006; accepted October 2006.

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows 87

hybrid meta heuristic combining simulated annealing
and tabu search with 2-interchange and a simple move
operator are proposed for the TSPTW. Computational
tests performed on 97 benchmark problem sets con-
sisting of 400 benchmark problem instances show that
the proposed approach generates optimal or near-opti-
mal solutions for all the problems in reasonable com-
puting time. Using the proposed approach, new best
known heuristic values for 17 benchmark problem sets
are obtained, and the results for 72 problem sets match
the previous best known solutions. The proposed ap-
proach performs particularly well on instances with
large numbers of customers and wide time windows
compared with the previous approaches.

This paper is organized as follows. After we briefly
review the related literature on algorithms for the
TSPTW in section 2, an iterative insertion algorithm is
presented in section 3. A hybrid meta heuristic com-
bining simulated annealing and tabu search with 2-in-
terchange and a simple move operator is described in
section 4. Section 5 shows the computational results
on the benchmark problem sets, and section 6 provides
concluding remarks.

2. Literature Review

Savelsbergh (1985) proposes methods to handle time
windows without increasing computational complexity
for 2-interchange and Or-interchange local searches.
He also proposes an insertion algorithm which inserts
the stops with tight time windows first and then the re-
maining stops. Langevin et al. (1993) present a two-
commodity flow model for the traveling salesman
problem. They use a branch-and-bound scheme with
lower bounds obtained by the LP relaxation of the
two-commodity flow model and subtour elimination
constraints. They find optimal solutions for problems
with up to 60 nodes.

Dumas et al. (1995) propose three time window re-
lated elimination tests to reduce the state space and the
number of state transitions of forward dynamic pro-
gramming for TSPTW. Optimal solutions are found
with up to 200 nodes with narrow time windows in
about a minute but they experience memory problems
due to the dimensionality of their state spaces. The
state spaces of their algorithm grow exponentially with
respect to time window width.

Gendreau et al. (1992) propose an insertion algo-
rithm and a post optimization method called GENIUS
for TSP, in which a partial sequence of an existing
route may be changed when a stop is inserted. Gendreau
et al. (1998) apply the GENIUS algorithm to TSPTW.
While stops are inserted in the route in random order
for the TSP in Gendreau et al. (1992), stops are insert-
ed with non-decreasing time window widths for the
TSPTW in Gendreau et al. (1998). The insertion posi-
tion of a stop is determined based on a certain number
of stops close to the stop with respect to the geometric
distance and a certain number of stops closest to the
stop with respect to the time window proximity. The
post optimization consists of successive removal and
reinsertion of all the stops in a route.

Calvo (2000) formulates a relaxed assignment prob-
lem (AP) from the TSPTW and attempts to get a sol-
ution close enough to a feasible solution of the original
problem. As the objective function of the relaxed AP,
he uses a weighted sum of the total travel time and the
total maximum possible waiting time. After solving
the relaxed AP, all the sub tours, if any, are inserted
one by one into the main route. He proposes a local
search method in which two objective functions (travel
time and route duration) are alternated to explore the
search area and a 3-opt exchange operator is used.

Carlton and Barnes (1996) present a reactive tabu
search with a move operator that removes a stop and
places it at a different position. They allow infeasible
solutions with penalty in their search procedure. Nanry
and Barnes (2000) extend this method and apply it to
the pickup and delivery problem with time windows
(PDPTW). They first construct an initial feasible sol-
ution with a simple predecessor-successor pair in-
sertion algorithm. Then, the initial solution is altered
by move neighborhood search operators. Infeasible
solutions are allowed with penalty during the search.
Depending on the tightness of time windows, different
neighborhood search strategies are selected in their
method.

Ohlmann and Thomas (2006) propose a variant of a
simulated annealing heuristic in which a penalty multi-
plier is used for infeasible solutions in addition to the
traditional temperature of the simulated annealing app-
roach. For the local search method, the 1-opt neigh-
borhood scheme is used. They obtain new best values
for many benchmark instances. 400 benchmark prob-
lem instances collected from the literature are hosted
on their homepage.

88 Byung-In Kim

3. Iterative Insertion Algorithm for
Initial Solution

Because getting a feasible solution from an infeasible
solution is not an easy task, we choose to find an ini-
tial feasible solution and keep the feasibility through
our improvement search procedures rather than allow-
ing infeasible solutions in the search process. Note that
Ohlmann and Thomas (2006) allow infeasible sol-
utions in their search process and have experienced
several cases in which their approach could not find a
feasible solution. Calvo (2000) also experienced sev-
eral infeasible instances.

The proposed iterative insertion algorithm is a repet-
itive procedure. As a base insertion procedure, Solo-
mon (1987)’s well-known insertion algorithm is used.
Solomon’s insertion heuristic initializes a route with
the farthest stop from the depot and inserts stops into
the route one at a time in a serial manner. For each
step, all the unrouted stops are tested for insertion at
all the possible positions in the route, and the best
unrouted stop and its best position are selected. A de-
tailed description of this method is presented in Solo-
mon (1987).

Although the Solomon’s insertion algorithm is very
intuitive and robust, its performance is highly sensitive
to the sequence of insertion because an insertion af-
fects all subsequent insertions. For example, given

stops a,b,c,d,e, and depot, there might be a case in
which stop e cannot be inserted into the route de-
pot-a-b-c-d–depot while stop a can be inserted into the
route depot-c-b-e-d-depot to make a new extended
route depot-c-a-b-e-d-depot as shown in <Figure 1>.
In fact, the pure insertion method could not find a fea-
sible solution for 26 benchmark instances, as pre-
sented in section 5.1. Most sequential insertion heu-
ristics have this sensitivity problem. Considering this
observation, we develop an iterative insertion algo-
rithm as follows.

The basic idea of the proposed approach is to insert
‘hard’ stops first and then to insert the remaining
stops. Initially (at step 0), all the stops are classified as
class 1, which means ‘not hard’, and are inserted into a
route using Solomon’s insertion algorithm (step 11). If
some stops remain unrouted after the insertion proce-
dure, the procedure attempts to reduce the total travel
time with a greedy 2-opt algorithm, make buffer time
for the unrouted stops (step 14) and reinsert them (step
11). If some stops still remain unrouted, it attempts to
maximize the total time window order count with the
greedy 2-opt (step 15), which is defined later, and re-
insert them (step 11). If there are unrouted stops and
no additional stops can be inserted in two consecutive
iterations, the remaining stops are classified as ‘hard’
stops, their class is set to 0 (step 13), the status of all
the stops is set to unrouted, and the procedure is re-
started (step 1).

a

b

e c

d d

c
e

b

a

a

d

ce

b

a

b

e c

d

a

e
c

d

b

[22,27], 22

[5,15], 15[15,20] (7)

(6)

(5)

[10,15], 10
[5,15], 5

(b) abcd + e = infeasible (c) cbed + a = feasible(a) Given Problem

[10,15]
[5,15]

[5,15][15,20]

[22,27]

Travel time

Time window

[5,15], 5
[10,15], 10

[5,15], 15[15,20]

[22,27], 22

[10,15], 10
[5,15]

[5,15], 5

[15,20], 15

[22,27], 22

[10,15], 15
[5,15], 10

[22,27], 27

[5,15], 5

[15,20], 20

Arrival time

Figure 1. Sensitivity of an insertion algorithm to the sequence of insertion.

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows 89

<Iterative insertion algorithm>

Step 0: Set status of all the stops = unrouted, class of stops = 1
Initialize a route with a path depot-depot.

Step 1: Repeat steps 2 – 16 until a termination criterion is reached.
Step 2: If there are stops whose class = 0,
Step 3: Set improve_type = 1.
Step 4: Insert unrouted stops whose class = 0 using Solomon’s insertion procedure into the route.

Set the status of stops inserted = routed.
Step 5: If all the stops whose class = 0 are routed, go to step 9.
Step 6: If there are unrouted stops with class = 0 and no additional stops can be inserted in two consecutive

trials, stop the procedure.
No feasible solution is found.

Step 7: If improve_type = 1,
Improve the route constructed with greedy 2-opt heuristic with objective minimizing
the total travel time.
Set improve_type = 2.
Go to step 4.

Step 8: Otherwise,
Improve the route constructed with greedy 2-opt heuristic with objective maximizing
the total time window order.
Set improve_type = 1.
Go to step 4.

Step 9: If there are stops whose class = 1,
Step 10: Set improve_type = 1.
Step 11: Insert unrouted stops using Solomon’s insertion procedure into the route.

Set the status of stops inserted = routed.
Step 12: If all the stops whose class = 1 are routed, stop the procedure.

A feasible solution is found.
Step 13: If there are unrouted stops and no additional stops can be inserted in two consecutive trials,

Set the class of unrouted stops = 0.
Reinitialize a route with a path depot-depot.
Set the status of all the stops = unrouted.
Go to step 2.

Step 14: If improve_type = 1,
Improve the route constructed with greedy 2-opt heuristic with objective of minimizing
the total travel time.
Set improve_type = 2.
Go to step 11.

Step 15: Otherwise,
Improve the route constructed with greedy 2-opt heuristic with objective of maximi-
zing the total time window order.
Set improve_type = 1.
Go to step 11

Step 16: Otherwise,
Stop the procedure. A feasible solution is found.

Now the stops classified as ‘hard’ stops (class = 0)
are routed first (steps 2 through 8). The steps are sim-
ilar to the previous ones except step 6. In step 6, if

there are unrouted stops whose class is 0 and no addi-
tional stops can be inserted in two consecutive iter-
ations, the procedure stops with infeasibility. Steps

90 Byung-In Kim

2-16 are iterated until a feasible solution is found or
until the procedure cannot insert any of ‘hard’ stops in
step 6.

The greedy 2-opt uses the 2-interchange operator. It
exchanges two links of a route as shown in <Figure
2>. Two links (i, i+1) and (j, j+1) are replaced with (i,
j) and (i+1, j+1) and the orientation of the path (i+1,
… , j) is reversed. A solution is said to be 2-opt if it is
impossible to improve it by exchanging a link with an-
other link. The 2-opt algorithm considers all the possi-
ble exchanges and selects the best exchange as a per-
manent move at each step, while the greedy 2-opt al-
gorithm makes a permanent move whenever it finds an
improving move. Because greedy 2-opt typically re-
quires less computational time, it is used in our
approach.

i j ji

i+1
j+1 j+1

i+1

Figure 2. A 2-interchange

Two alternative objective functions are used for the
greedy 2-opt algorithm in the proposed approach.
First, the total travel time is minimized. When no stops
can be inserted into a route optimized with regard to
the total travel time, however, maximizing the total
time window order count is used as an alternative
function. The time window order count is defined as
the total number of stop pairs whose sequence orders
in the route match with their time windows. For exam-
ple, when stop i with time window [ei(earlist visit
time), li(latest visit time)] is sequenced before stop j
with time window [ej, lj] in a route, if ei ≤ ej and li ≤
lj the stop pair is well sequenced with regard to their
time windows thus, it has 1 time window order count.
If the conditions do not match, the pair does not have a
time window order count. <Figure 1>shows two ex-
amples. While the partial route of <Figure 1-(b) top>,
depot-a-b-c-d-depot, has time window order count of
5(ab, ac, ad, bd, and cd), the one of <Figure 1-(c) top>,
depot-a-c-b-d-depot, has 6 (ac, ab, ad, cb, cd, and bd).
Note that the route of the former has better total travel
time compared with the latter but the latter has better
total time window order count. While stop e cannot be

inserted in the former route, the stop can be inserted
into the latter route.

Using the proposed approach, we could find a fea-
sible solution for each of the 400 benchmark problem
instances.

4. A Hybrid Improvement Meta
Heuristic Approach

In addition to the 2-interchange operator described in
the previous section, a simple move operator is used as
a neighborhood search operator in our improvement
procedure. The simple move operator replaces stop i
such that it will be visited right after stop j as shown in
<Figure 3>. After experimenting with other operators
such as the CROSS exchange of Taillard et al. (1997)
and the Or-interchange of Or (1976), we decided to
use the 2-interchange and the simple move operator
due to their effectiveness and short computation time.

i-1 i+1 i+1i-1

j-1
j j+1

j-1
j j+1

i
i

Figure 3. A simple move operator

A hybrid meta heuristic of simulated annealing and
tabu search with the two operators is proposed below.
The basic framework of the proposed approach fol-
lows a typical simulated annealing (SA) algorithm.
Our approach varies from others in using tabu list
within SA and using random selection of move oper-
ators at each iteration.

Step 0 of the algorithm is an initialization step in
which an initial feasible solution Si is obtained through
the iterative insertion algorithm and the parameters are
set. The function f(.) represents an objective function.
In this research, the total travel time is used as the ob-
jective function. The initial temperature in step 0 is set
such that solutions with (100*2/number of stops) per-
cent longer travel time than the initial solution are like-
ly to be accepted with 25 percent probability. For ex-
ample, when the number of stops in a route is 20,
(100*2/number of stops) percent becomes 10 percent

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows 91

< Hybrid Meta heuristic algorithm>
Step 0: Get a feasible initial solution Si using the iterative insertion algorithm.

Set initial temperature T = (-(2/num of stops) *f(Si) / ln(0.25)
Get the number of maximum temperature changes Niter (=30)
Get the number of iterations per temperature

Nover (= min(1000000, num of stops*10000))
Get the maximum number of solutions evaluated per temperature

Nlimit (= min(200000, num of stops*1000))
Get the cooling coefficient (= 0.925)
Get the tabu tenure l (= min(100, num of stops* num of stops/2))
Set the best solution Sbest = Si

Set the global best solution Sgloabl best = Si

Set iteration count k =1
Step 1: Repeat steps 2 – 18 while k ≤ Niter
Step 2: Set current solution Scurrent = Sbest

Initialize tabu list tabu[][] = 0
Initialize tabu list obj_tabu_list[] = 0

Step 3: Set inner iteration count m = 1
Set evaluated count n = 0

Step 4: Repeat steps 5-17 while m ≤ Nover and n ≤ Nlimit
Step 5: Generate sequence indices i, j randomly and get corresponding stop indices stop_i, stop_j
Step 6: Select randomly the 2-interchange operator or the simple move operator with equal chance
Step 7: If selected operator = 2-interchange and tabu [stop_i][stop_j] ≤ m

or selected operator = simple move and tabu[stop_j][stop_i] ≤ m
Step 8: Calculate f(Snew) using the operator and stop indices selected
Step 9: Calculate travel time difference △= f(Snew)- f(Scurrent)
Step 10: If obj_tabu_list[f(Snew)]≤m and (△<0 or (△≥0 and rand(0,1)< e(-△/T))),
Step 11: Set obj_tabu_list[obj_value] = m + 100

Increment n by 1
Step 12: Check feasibility of Snew

If Snew is feasible,
Step 13: Set Scurrent = Snew

If selected operator = 2-interchange,
Set tabu[stop_i][stop_j] = m+l

Otherwise,
Set tabu[stop_j][stop_i] = m+l

Step 14: If f(Snew) ≤ f(Sbest),
Set Sbest = Snew

Step 15: Improve Snew using 2-opt improvement
Step 16: If f(Snew) ≤ f(Sglobal best), Set Sglobal best = Snew

Step 17: Increment m by 1
Step 18: Set T = *T, Increment k by 1

and when the number of stops is 200, it is 1 percent.
The two numbers, (2/number of stops) and 25 percent,
were selected intuitively and verified experimentally.
The other parameters set in step 0 were also estab-
lished through pre experimental tests. The number of
stops of a problem is took into consideration in most

parameters to adjust the computing time dynamically
according to the problem size.

At each temperature value, the current solution is re-
placed with the current best solution and the two di-
mensional tabu list and the tabu list for objective value
are initialized (step 2). The tabu list, tabu[stop_i][s-

92 Byung-In Kim

top_j], determines when any specific two stops (stop_i
and stop_j) must not be considered for the move
operators. The upper-right corner elements of the tabu
list, i.e., stop_i <stop_j, keep the tabu period for the
2-interchange, while the lower-left corner elements
keep the tabu period for the simple move operator.
The tabu list, obj_tabu_list[objective value] keep the
tabu period for the objective value.

At each inner-iteration, sequence indices i and j are
randomly selected (step 5). The sequence index repre-
sents the order of visits in a route. Thus, if there are 5
stops in a route, the possible sequence indices are 1, 2,
3, 4, and 5. Each sequence index has a corresponding
stop index. For example, when a route solution has a
sequence of stops 31, 20, 45, 4, 27, and the sequence
indices selected are 2 and 4, their corresponding stop
indices are 20 and 4.

In order to diversify the search area, the 2-inter-
change operator or the simple move operator is se-
lected randomly with equal probability at each iter-
ation (step 6). Depending on the selected operator, the
upper-right corner or lower-left corner of the tabu list
is checked (step 7) and, when the intended move is not
in the tabu list, i.e., the tabu tenure of the pair is al-
ready past, the move is further considered. In step 8,
the total travel time of the solution newly obtained by
the move operator is calculated. In this step, only af-
fected portions of the solution are considered. In
<Figure 2>, the total travel time of the right hand sol-
ution is calculated by the travel time of the left hand
solution f(Scurrent) plus travel time (i, j) plus travel time
(i+1, j+1) minus travel time (i, i+1) minus travel time
(j, j+1). Note that we are assuming a symmetric
TSPTW such that the travel time for path (i+1,…, j) is
the same as the travel time for path (j, …, i+1).
Similarly, the total travel time for the new solution
constructed by the simple move operator is easily
calculated. Then, the difference between the newly
constructed solution and the current solution is calcu-
lated (step 9).

When the new solution value f(Snew) is not in the ob-
jective value tabu list and if the move is an improve-
ment, the feasibility of the solution Snew is checked.
When the move is not in improving direction, the fea-
sibility of the solution Snew is checked with a proba-
bility e(-△/T)(step 10). When the solution Snew is feasible
with the time window constraints (step 12), the current
solution is replaced with the new solution, and the
tabu list is updated (step 13). When the solution Snew is
better than the current best solution Sbest, the best sol-

ution is also updated (step 14). The best solution is
further improved using the 2-opt improvement algo-
rithm (step 15). When the improved solution is better
than the global best solution, the global best solution is
updated accordingly (step 16). The steps are iterated
for the given number of iterations. The global best sol-
ution will be the final solution.

5. Computational Results

The algorithms were tested on 400 TSPTW bench-
mark problem instances taken from the literature: 70
instances from Langevin et al. (1993), 135 from Dumas
et al. (1995), 30 from Potvin and Bengio (1996), 140
from Gendreau et al. (1998), and 25 from Ohlmann
and Thomas (2006). Ohlmann and Thomas (2006) have
collected the data sets and made them available from
http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkData
Sets.htm.

All the data sets except the data set of Potvin and
Bengio (1996) are classified by the number of custom-
ers and time window width. Each class of problems of
Dumas et al. (1995), Gendreau et al. (1998), and Ohlmann
and Thomas (2006) has five instances, while each
class of Langevin et al. (1993) has ten instances for
each data set of customer number – time window width
pair. Thus, the results reported on those data sets are
the averages over five instances or ten instances. Potvin
and Bengio (1996) generated individual TSPTW in-
stances from Solomon’s RC2 VRPTW instances.

The algorithms were implemented in the C langu-
age. Computational times in this section are in seconds
on a Windows XP Pentium 4, 3.4 GHz processor with
3.25 GB of RAM, and include the times for initial sol-
ution generation and improvement steps. The comput-
ing times of other algorithms are from the reference
papers.

5.1 Effectiveness of the Iterative Insertion
Algorithm for Initial Solution

<Table 1> shows the effectiveness of the proposed
iterative insertion algorithm. An insertion algorithm
without iterations and the concept of classes could not
generate a feasible solution for 26 of the 400 problem
instances. The proposed iterative insertion algorithm
could produce a feasible solution for all 400. Note that
Ohlmann and Thomas (2006) could not find a feasible

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows 93

solution in several trials for several problem sets (for
example, the rc204(1) problem instance of Potvin and
Bengio).

Table 1. Naive insertion algorithm vs. iterative in-
sertion algorithm

Data set
Number
of total

instances

Number of
infeasible instances

using naive
insertion method

Number of
infeasible instances

using iterative
insertion method

Langevin
et al. 70 6 0

Dumas
et al. 135 14 0

Potvin and
Bengio 30 5 0

Gendreau
et al. 140 1 0

Ohlmann
& Thomas 25 0 0

5.2 Effects of Tabu List and Move Operators
In order to examine the effects of the tabu list and

selection of move operators within SA, 4 combinations
of those factors have been tested as in <Table 2>. In
the first two experiments, a move operator (either the
simple move or the 2-interchange) was randomly se-
lected at each iteration as described in the previous
section. In the third experiment, the simple move oper-
ator was used exclusively while the 2-interchange was
used in the last experiment. Tabu list was used within
SA for all the experiments but the second one. Com-
parison of the first, third, and the last experiments
shows the effectiveness of the random selection strat-
egy of move operators. Random selection of move op-
erators generates better solutions for all the problem
sets.

Comparison of the first two experiments shows that
SA with the tabu list produces better solutions for all
the problem sets. We observed similar results for
other data sets through our experiments. The results
presented in the next subsection have been obtained by
using mixed move with tabu list for all the problem
sets.

5.3 Benchmark Tests

<Table 3> provides computational results for the in-
stances of Langevin et al. (1993). The first column
shows the number of customers in a problem instance
and the second column shows the average time win-
dow width. Since optimal solutions for the problems
with 60 customers are only partially known, the aver-
age solution values of ten instances for the exact meth-
od cannot be calculated and are left blank.

We have compared the proposed algorithm to known
optimal solutions and the solutions of Calvo (2000)
and Ohlmann and Thomas (2006). For each instance,
we provide the best solution obtained in ten runs as
well as the average solutions and the average CPU
time in seconds. The proposed approach produces op-
timal solutions for three problem sets and matches the
other algorithms for two problem sets. The last prob-
lem set with 60 customers and time window 40 is 0.1
longer from the other approaches. There is one in-
stance out of 10 in which the solution of the proposed
approach is one unit longer than the solution of other
approaches, but the proposed approach matches other
approaches for the remaining nine instances. It is diffi-
cult to compare computational times among the ap-
proaches because of different processor speeds, mem-
ory, and implementation details. However, the compu-
tational time of the proposed approach is longer than

Table 2. Comparison of various strategies using instances from Ohlmann and Thomas (2006)

Mixed move with tabu Mixed move without tabu Simple move with tabu 2-interchange with tabu

Solution value CPU Solution value CPU Solution value CPU Solution value CPU

724.6 126.3 740.2 30.8 727.2 112.4 727.4 119.1

697.4 118.0 718.0 33.9 698.0 111.4 698.2 122.4

671.8 117.9 701.2 29.1 675.6 108.8 678.4 119.3

806.8 176.5 823.2 46.5 812.6 166.3 807.6 168.6

801.2 185.7 814.2 46.0 804.2 179.2 806.0 175.9

94 Byung-In Kim

 Table 3. Results on instances from Langevin et al. (1993)

Data Set Exact Algorithm Proposed Algorithm Ohlmann & Thomas Calvo

n tw Solution
value CPU Best Value Avg. Value CPU Solution

value CPU Solution
value CPU

20
30 724.7 0.4 724.72 724.72 4.7 724.7 2.4 724.7 0.0

40 721.5 0.7 721.55 721.55 4.8 721.5 3.4 721.5 0.0

40
20 982.4 1.7 982.71 982.71 16.4 982.7 4.4 982.7 0.3

40 951.8 7.3 951.82 951.82 17.1 951.8 4.7 951.8 0.6

60

20 - - 1215.68 1215.68 33.4 1215.7 5.6 1215.7 5.0

30 - - 1183.25 1183.25 34.2 1183.2 8.1 1183.2 5.0

40 - - 1160.90 1160.90 34.7 1160.8 9.0 1160.8 10.9

Table 4. Results on instances from Dumas et al. (1995)

Data Set Exact Algorithm Proposed Algorithm Ohlmann & Thomas Calvo

n tw Solution
Value CPU Best Value Avg. Value CPU Solution

value CPU Solution
value CPU

20

20 361.2 0.0 361.2 361.2 5.7 361.2 2.0 361.2 0.0
40 316.0 0.1 316.0 316.0 6.6 316.0 2.7 316.0 0.0
60 309.8 0.1 309.8 309.8 6.8 309.8 2.5 309.8 0.0
80 311.0 0.2 311.0 311.0 6.9 311.0 3.0 311.0 0.0

100 275.2 1.3 275.2 275.2 7.3 275.2 3.2 275.2 0.0

40

20 486.6 0.1 486.6 486.6 19.2 486.6 3.8 486.6 3.0
40 461.0 0.0 461.0 461.0 19.5 461.0 5.1 461.0 3.0
60 416.4 4.4 416.4 416.4 19.5 416.4 6.0 416.4 4.8
80 399.8 7.5 399.8 399.8 20.3 399.8 6.2 399.8 5.2

100 377.0 31.4 377.0 377.0 20.5 377.0 6.6 377.0 5.6

60

20 581.6 0.2 581.6 581.6 36.2 581.6 7.2 581.6 8.4
40 590.2 0.9 590.2 590.2 36.3 590.2 8.2 590.4 17.2
60 560.0 6.8 560.0 560.0 36.5 560.0 8.5 560.0 20.2
80 508.0 46.6 508.0 508.0 36.0 508.0 8.6 509.0 18.0

100 514.8 199.8 514.8 514.8 37.3 514.8 8.8 516.4 26.2

80

20 676.6 0.4 676.6 676.6 55.8 676.6 11.3 676.6 43.4
40 630.0 2.7 630.0 630.0 56.2 630.0 11.5 630.0 69.2
60 606.4 55.3 606.4 607.2 59.1 606.4 12.0 596.5(4) 71.6
80 593.8 220.3 593.8 593.8 58.6 593.8 11.5 594.4 59.6

100
20 757.6 0.6 757.6 757.6 78.2 757.6 15.4 757.8 102.6
40 701.8 7.4 701.8 701.8 80.2 701.8 15.7 703.6 128.6
60 696.6 108.0 696.6 696.6 83.1 696.6 15.9 696.6 148.0

150
20 868.4 2.4 868.4 868.4 98.6 868.4 24.7 868.6 419.8
40 834.8 115.9 834.8 834.8 107.6 834.8 25.2 837.4 529.6
60 805.0 463.0 *818.6 818.7 107.6 818.8 25.6 820.4 630.0

200
20 1009.0 6.7 1009.4 1009.4 123.7 1009.0 35.1 1010.0 1456.2

40 984.2 251.4 *984.2 984.4 159.5 984.6 35.2 985.4 2105.8

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows 95

Table 5. Results on instances from Gendreau et al. (1998)

Data Set Proposed Algorithm Ohlmann & Thomas Calvo Gendreau et al.

n tw Best Value Average
Value CPU Solution

value CPU Solution
value CPU Solution

value CPU

20

120 265.6 265.6 7.4 265.6 3.1 267.2 0.0 269.2 4.1

140 232.8 232.8 7.9 232.8 3.9 259.6 0.0 263.8 4.4

160 218.2 218.2 8.0 218.2 4.0 260.0 0.0 261.2 4.8

180 236.6 236.6 7.8 236.6 4.0 244.6 0.0 259.8 6

200 241.0 241.0 7.7 241.0 4.1 243.0 0.4 245.2 6.3

40

120 377.8 377.8 20.2 377.8 6.0 360.0 4.8 372.8 18.4

140 364.4 364.4 20.2 364.4 6.0 348.4 9.4 356.2 18.9

160 326.8 326.8 20.5 326.8 6.0 337.2 10.2 348.0 20

180 330.4 330.6 20.2 332.0 6.2 326.8 12.4 328.2 17

200 313.8 314.0 20.6 313.8 6.3 315.2 16.2 326.2 22.8

60

120 451.0 451.0 37.5 451.0 8.3 483.4 29.8 492.0 51.6

140 *452.0 452.0 36.2 452.4 8.6 454.4 28.0 454.8 49.5

160 464.0 464.6 37.3 464.6 8.4 448.6 33.8 451.6 47.5

180 *421.2 421.2 36.5 421.6 8.6 432.8 40.6 439.2 52.3

200 427.4 427.9 36.6 427.4 8.4 428.0 57.0 439.6 43.5

80

100 *578.6 578.6 58.1 579.2 11.5 580.2 72.8 584.2 99.5

120 541.4 541.4 57.8 541.4 11.5 549.8 64.0 581.8 121

140 *506.0 506.4 56.8 509.8 11.3 525.6 75.2 555.2 94.2

160 504.8 504.9 59.7 505.4 11.2 502.8 82.2 524.8 85.7

180 500.6 500.6 59.0 502.0 11.4 489.0 116.2 511.0 99

200 481.8 481.8 57.7 481.8 11.1 484.0 158.2 508.6 112.3

100

80 666.4 666.4 86.1 666.4 15.9 668.0 139.2 675.6 118.1

100 *640.6 641.4 86.1 642.2 14.6 644.0 118.6 671.2 129.5

120 *597.2 598.7 84.6 601.2 15.0 614.4 167.5 624.6 204.2

140 *548.4 548.4 81.8 579.2 14.9 591.4 200.6 634.6 207.7

160 *555.0 555.1 85.5 584.0 15.0 570.4 214.2 585.2 215.6

180 561.6 561.7 81.8 561.6 14.9 566.0 244.6 585.2 225.1

200 *552.2 554.4 82.4 555.4 14.9 555.6 242.0 588.6 168.2

96 Byung-In Kim

Table 6. Results on instances from Potvin and Bengio (1996)

Data Set 　Proposed Algorithm Ohlmann & Thomas Calvo Gendreau et al.

Problem n Best Value Average
Value CPU Solution

value CPU Solution
value CPU Solution

value CPU

rc201(1) 19 444.54 444.54 7.0 444.54 5.1 444.54 0 444.54 3

rc201(2) 25 711.54 711.54 8.8 711.54 5.8 711.54 0 712.91 6.98

rc201(3) 31 790.61 790.61 11.7 790.61 6 790.61 3 795.44 14.98

rc201(4) 25 793.64 793.64 9.4 793.64 4.5 793.64 0 793.64 6

rc202(1) 32 771.78 771.82 13.0 771.78 5.8 772.18 8 772.18 10.55

rc202(2) 13 304.14 304.14 5.1 304.14 4.6 304.14 0 304.14 2.35

rc202(3) 28 837.72 837.72 10.6 837.72 5.1 839.58 0 839.58 6.97

rc202(4) 27 793.03 793.03 9.4 793.03 4.9 793.03 2 793.03 11.55

rc203(1) 18 453.48 453.48 6.9 453.48 3.9 453.48 0 453.48 4.03

rc203(2) 32 784.16 784.16 14.9 784.16 6.1 784.16 4 784.16 15.67

rc203(3) 36 817.53 817.53 18.3 817.53 6.9 819.42 14 842.25 16.02

rc203(4) 14 314.29 314.29 5.4 314.29 3.4 314.29 0 314.29 2.98

rc204(1) 45 *868.64 868.65 26.4 878.64 6.8 868.76 35 897.09 26.43

rc204(2) 32 662.16 662.16 14.4 662.16 6.3 665.96 8 679.26 15.9

rc204(3) 23 455.03 456.07 9.5 455.03 4.5 455.03 4 460.24 11.18

rc205(1) 13 343.21 343.21 3.4 343.21 3.9 343.21 0 343.21 1.13

rc205(2) 26 755.93 755.93 8.9 755.93 6.3 755.93 0 755.93 7.33

rc205(3) 34 825.06 825.06 16.2 825.06 6 (825.06) (21) 825.06 42.9

rc205(4) 27 760.47 760.47 11.2 760.47 4.6 - - 762.41 6.58

rc206(1) 3 117.85 117.85 1.1 117.85 1 117.85 0 117.85 0.01

rc206(2) 36 828.06 828.06 16.3 828.06 6.2 842.17 10 842.17 33.47

rc206(3) 24 574.42 574.42 9.3 574.42 5.9 574.42 0 591.2 6.75

rc206(4) 37 831.67 835.77 17.3 831.67 7 837.54 8 845.04 31.48

rc207(1) 33 732.68 732.68 14.7 732.68 6.3 733.22 4 741.53 14.76

rc207(2) 30 701.25 701.25 11.7 701.25 7 - - 718.09 16.28

rc207(3) 32 682.40 682.40 13.9 682.4 6 684.4 10 684.4 17.25

rc207(4) 5 119.64 119.64 1.6 119.64 2 119.64 0 119.64 0.01

rc208(1) 37 789.25 789.25 18.4 789.25 6.4 789.25 10 799.19 26.58

rc208(2) 28 533.78 533.78 12.4 533.78 5.5 537.33 2 543.41 20.53

rc208(3) 35 634.44 634.44 16.7 634.44 6.7 649.11 8 660.15 25.63

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows 97

the other approaches.
<Table 4> presents computational results for the in-

stances of Dumas et al. (1995). The proposed ap-
proach produces optimal solutions for 25 problem sets
out of 27 problem sets and obtains new best known
heuristic values for the (150 customers, 60 time win-
dow) and (200 customers, 40 time window) problem
sets. We observe that there is no significant difference
in computation time among the instances with the
same number of customers and different time win-
dows, and the computation time grows linearly with
respect to the number of customers. In contrast, the
computation time of Calvo (2000)’s approach had a
higher than linear growth rate with respect to the num-
ber of customers. Also note that although exact algo-
rithms may perform well for specific problems, e.g.
(200 customers, 20 time window) problem set, they
cannot be applied for general problems due to their ex-
ponential computation time growth. Exact algorithms
are generally good for small size problems with tight
time windows.

<Table 5> shows the results for the instances of
Gendreau et al. (1998). The proposed approach pro-
duces new best known heuristic solutions for 9 prob-
lem sets and matches the best known values for 13 of
the 28 problem sets. <Table 6> presents the results for
the instances of Potvin and Bengio (1996). The pro-
posed approach generates a new best known heuristic
solution and matches the best known heuristic solutions
for all other instances. <Table 7> presents the results
for the instances of Ohlmann and Thomas (2006). The
proposed approach produces new best known heuristic
solutions for all 5 problem sets.

Table 7. Results on instances from Ohlmann &
Thomas (2006)

Data Set Proposed Algorithm Ohlmann &
Thomas

n tw Best
Value

Average
Value CPU Solution

value CPU

150

120 *723.0 724.2 118.3 725.0 24.8

140 *696.6 697.6 119.6 697.6 24.9

160 *671.2 673.0 117.2 673.6 25.0

200
120 *804.2 805.8 172.8 806.8 34.4

140 *798.8 800.8 178.3 804.6 35.2

The proposed approach obtained new best known
heuristic values for 17 of 97 benchmark problem sets,

and the results for 72 others matched the previous best
known solutions. The proposed approach particularly
performs well on instances with large number of cus-
tomer stops and wide time windows compared with
the previous approaches.

6. Conclusions

We have proposed and tested a TSPTW approach
that combines a constructive search heuristic and an
improvement search heuristic. The constructive search
heuristic is based on an iterative insertion algorithm
and the improvement search heuristic is a hybrid meta
heuristic combining simulated annealing and tabu
search with the randomized selection of a move oper-
ator. The proposed approach has generated new best
known heuristic values for various problem sets and
matched the previous best known solutions for other
problem sets. We could set new upper bounds for 17
benchmark problem sets for the TSPTW research
community.

The computation time of the proposed approach is
relatively long compared with other approaches but
the solution quality is superior. Reducing the computa-
tion time without compromising the solution quality is
one of our future research issues. Along this line of is-
sue, the parameter setting of the hybrid meta heuristic
algorithm also needs further study.

References

Calvo, R. W. (2000), A new heuristic for the traveling salesman
problem with time windows, Transportation Science, 34(1),
113-124.

Carlton, W. B. and Barnes, J. W. (1996), Solving the traveling
salesman problem with time windows using tabu search, IIE
Transactions, 28, 617-629.

Dumas, Y., Desrosiers, J., Gelinas, E. and Solomon, M. M.
(1995), An optimal algorithm for the traveling salesman
problem with time windows, Operations Research, 43(2),
367-371.

Gendreau, M., Hertz, A. and Laporte, G. (1992), New insertion
and postoptimization procedures for the traveling salesman
problem, Operations Research, 40(6), 1086-1094.

Gendreau, M., Hertz, A. and Laporte, G. and Stan, M. (1998),
A generalized insertion heuristic for the traveling salesman
problem with time windows, Operations Research, 46(3),
330-335.

Langevin, A., Desrochers, M., Desrosiers, J., Gelinas, S. and

98 Byung-In Kim

Soumis, F. (1993), A two-commodity flow formulation for
the traveling salesman and the makespan problems with
time windows, Networks, 23, 631-640.

Nanry, W. P. and Barnes, J. W. (2000). Solving the pickup and
delivery problem with time windows using reactive tabu
search, Transportation Research Part B, 34, 107-121.

Ohlmann, J. W. and Thomas, B. W. (2006), A compressed an-
nealing approach to the traveling salesman problem with
time windows, INFORMS Journal on Computing (to appear).

Or, I. (1976), Traveling Salesman-type Combinatorial Problems
and Their Relation to the Logistics of Blood Banking.Ph.D.
Dissertation, Dept. of Industrial Engineering and Manage-
ment Sciences, Northwestern University.

Potvin, J. Y. and Bengio, S. (1996), The vehicle routing prob-
lem with time windows. II. genetic search, INFORMS Journal
on Computing, 8, 165-172.

Savelsbergh, M. W. P. (1985), Local search in routing prob-
lems with time windows, Annals of Operations Research, 4,
285-305.

Solomon, M. M. (1987), Algorithms for the vehicle routing and
scheduling problem with time window constraints, Oper-
ations Research, 35(2), 254-265.

Taillard, E. D., Badeau, P., Gendreau, M., Guertin, F. and Potvin,
J. Y. (1997), A tabu search heuristic for the vehicle routing
problem with soft time windows, Transportation Science,
31(1), 170-186.

