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Identification of Novel Universal Housekeeping Genes
by Statistical Analysis of Microarray Data
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Housekeeping genes are widely used as internal controls in

a variety of study types, including real time RT-PCR,

microarrays, Northern analysis and RNase protection

assays. However, even commonly used housekeeping genes

may vary in stability depending on the cell type or disease

being studied. Thus, it is necessary to identify additional

housekeeping-type genes that show sample-independent

stability. Here, we used statistical analysis to examine a

large human microarray database, seeking genes that were

stably expressed in various tissues, disease states and cell

lines. We further selected genes that were expressed at

different levels, because reference and target genes should

be present in similar copy numbers to achieve reliable

quantitative results. Real time RT-PCR amplification of

three newly identified reference genes, CGI-119, CTBP1

and GOLGAl, alongside three well-known housekeeping

genes, B2M, GAPD, and TUBB, confirmed that the newly

identified genes were more stably expressed in individual

samples with similar ranges. These results collectively

suggest that statistical analysis of microarray data can be

used to identify new candidate housekeeping genes showing

consistent expression across tissues and diseases. Our

analysis identified three novel candidate housekeeping

genes (CGI-119, GOLGA1, and CTBP1) that could prove

useful for normalization across a variety of RNA-based

techniques.
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Introduction

Recently developed technologies such as microarray analysis

allow researchers to determine genome-wide expression patterns,

providing important insights into complex regulatory networks,

enabling the identification of new or under-explored biological

processes, and implicating genes in various disease processes

(Schena et al., 1995; Golub et al., 1999; Graveel et al., 2001;

Hamadeh et al., 2002; Lee and Thorgeirsson, 2002; Suh et al.,

2006; Zhong et al., 2006). Another new technology, real-time

reverse transcription polymerase chain reaction (RT-PCR),

simultaneously measures gene expression in many different

samples, providing quantitative information and good reflections

of expression level changes (Gibson et al., 1996; Heid et al.,

1996). Both of these mRNA-based strategies, as well as others

such as Northern blotting and RNase protection assays,

require accurate, reproducible normalization of results. Various

strategies have been used to normalize gene expression data,

including cell counting, quantification of total RNA and

measurement of rRNA (Vandesompele et al., 2002). The most

common mRNA normalization strategy involves the use of

internal control genes. These so-called housekeeping genes

(Suzuki et al., 2000) are generally stable across tissues, cells

and experimental treatments, thus providing good normalization.

However, although housekeeping genes are uniformly expressed

in certain cell types, they can vary in others (Thellin et al.,

1999; Suzuki et al., 2000; Warrington et al., 2000), particularly

in clinical samples associated with malignant diseases (Suzuki

et al., 2000; Khimani et al., 2005). Thus, the selection of

proper control genes for clinical patient samples is vital to

gene expression analysis.

A variety of statistical methods and programming efforts

have been employed to seek and evaluate new, stable, reference

genes (Szabo et al., 2004). For example, Speleman and

colleagues (Vandesompele et al., 2002) developed the GeNorm

program, which uses geometric means to calculate the correct

normalizing factor from existing housekeeping genes. Here,

we utilized statistical tools, such as geometric mean, standard
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deviation and linear regression, to search a large microarray

database for new, stably expressed, novel genes. We further

screened for reference genes that are expressed at different

levels, as it is beneficial for the reference genes and the genes

of interest to be within similar ranges of expression.

Materials and Methods

Data samples. The Oncology Database of Gene Logic contains the

genomic expression profiles of clinical tissue samples from many

different human organs. These profiles were originally generated

using high-density oligonucleotide microarray analysis (HG-U133;

Affymetrix) of 281 normal tissue samples from 17 different organs,

including breast (27), cervix (5), colon (26), duodenum (10),

endometrium (9), esophagus (14), kidney (29), liver (21), lung (32),

lymph node (5), myometrium (5), ovary (19), pancreas (19),

prostate (15), rectum (18), skin (5), and stomach (22) (numbers in

parentheses indicate the number of normal tissue samples

analyzed). Normalized signals (expression values) were obtained

using the Microarray Suite 5.0 software (Affymetrix), which deletes

the largest 2% and the smallest 2% outliers, and the mean of the

remaining values (trimmed mean) was used to compute the scale

factor (SF = 100/trimmed mean).

Statistical data analysis. Novel reference genes exhibiting little

variation across the 17 tissue sample sets were identified by

comparing the geometric means of the expression values in each

sample set, using the GeneExpress 2000 Software Contrast

Analysis and Electronic Northern Analysis tools. Contrast analysis

was used to find genes that were similarly expressed across sample

sets, while electronic Northern analysis allowed us to infer the

range of expression levels for each gene in each sample set

(Schmitt et al., 1999). Selected novel reference genes were further

evaluated by linear regression analysis (Analyzing Data with

Graphical Prism, GraphPad Software Inc.). Briefly, for each

reference gene, the Fold Value to Minimum (FVM) of each tissue

sample set was obtained by dividing the geometric mean of the

sample set by the minimum among the 17 mean values. Linear

regression analysis was performed using the FVMs to generate

slope and R2 values. A lower slope value indicated less variation in

the expression of a given gene across the 17 tissue sample sets. For

individual tissue samples, linear regression analysis was performed

with FVMs calculated by dividing the expression value of each

tissue sample by the minimum among the 281 expression values.

Comparison analysis. Three selected novel reference genes (CGI-

119[Transmembrane BAX inhibitor motif containing 4], GOLGA1

[golgi autoantigen, golgin subfamily a, 1] and CTBP1[C-terminal

binding protein 1]) were compared with three well-known, housekeeping

genes (B2M[Beta-2-microglobulin], GAPD[Glyceraldehyde-3-

phosphatedehydrogenase] and TUBB[tubulin beta 2A]) (Thellin et

al., 1999; Suzuki et al., 2000), using the statistical analyses

described above. Real time RT-PCR data from the different sets of

clinical samples were analyzed for comparison of the six genes.

Real time RT-PCR. Sixty-seven independent tissues from different

clinical samples used for microarray analysis were prepared as

previously described (Kim and Kim, 2003; Kim and Park, 2005).

Total RNA was reverse transcribed to cDNA using oligo(dT), and

quantitative real-time PCR analysis was performed as previously

described (Kim et al., 2003). In brief, the templates and primer sets

were mixed with 2x QuantiTect SYBR Green PCR Master Mix

(Quiagen), and 20 cycles of PCR reaction were performed using a

Rotor-Gene real-time PCR machine (Corbett Research, Inc.). The

gene-specific primers were TUB (TTCCAGCTGACCCACTCTCT;

ACAGGGCCTCGTTATCAATG), GAPD (TGCACCACCAACT

GCTTAGC; GGCATGGACTGTGGTCATGAG), B2M (TGCTGT

CTCCATGTTTGATGTATC; TCTCTGCTCCCCACCTCTAAG),

CGI-119 (TGGTGAAACCCCGTCTCTAC; TGATCTTGGCTCA

ATGCAAC), GOLGA1 (GAAACAGGACTTGGAGCAGC; ATG

TTTGCCATCTCAGGTCC), and CTBP1 (TTCACCGTCAAGCA

GATGAG; GGCTAAAGCTGAAGGGTTCC) (Vandesompele et

al., 2002). All experiments were performed at least twice.

Results and Discussion

Accurate normalization of gene expression levels is an absolute

prerequisite for reliable study results, especially when

investigating the biological significance of subtle differences

in gene expression. As numerous studies have reported that

housekeeping gene expression can vary considerably (Suzuki

et al., 2000; Chen et al., 2002; Kim and Wang, 2003), it is

important to choose the most appropriate control for a given

tissue or disease. Here, we used basic statistical methods such

as geometric mean, standard deviation and linear regression to

identify novel reference genes from a large microarray

database.

We obtained the genomic expression patterns of 281 normal

tissue samples from the 17 different organs, available from the

Oncology Database of Gene Logic, and used two statistical

methods to screen these data for novel reference genes. First,

we used mean and standard deviations. For initial correction,

all expression profiling data of each gene were divided by the

corresponding minimum data, which normalize the data with

regards to the copy numbers of each gene. Then the mean and

standard deviations of the values from each gene were

calculated. Since the data had been divided by their minimum

values, corrected values near 1 indicated that the genes

showed little variation, as did small standard deviations. We

then analyzed the data by multiplying the mean values with

the corresponding standard deviations, which increased the

reliability of the analysis. Thus, lower values (mean times

standard deviation) indicated genes with lower variations in

expression level. This is a necessary, although insufficient,

characteristic for identification of a candidate reference gene.

Secondly, we utilized a simple linear regression model. The

data from each gene were divided by the corresponding

minimum data and sorted with regards to the FVM data value

as described in the statistical data analysis section of Materials

and Methods. The sorted data were analyzed by a simple

linear regression model (slope and R2 value), in which the
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Fig. 1. Identification of novel reference genes. A and B: Expression profiles of reference genes across 281 individual tissue samples

(X-axis). For better comparison, the genes are divided into 2 groups according to their expression levels (Y-axis): high expression genes

(A) and low expression genes (B).

Fig. 2. A~F: Expression profiles of novel reference genes (A, B, D, and F) and the commonly used reference genes, GAPD (C) and

TUBB (E), across 17 different tissue sample sets. GenBank accession numbers are indicated. The Y-axis indicates the copy number of

the corresponding genes. The abbreviations used on the X-axis are: B, breast; CE, cervix; CO, colon; D, duodenum; EN, endometrium;

ES, esophagus; K, kidney; LI, liver; LU, lung; LY, lymph node; M, myometrium; O, ovary; PA, pancreas; PR, prostate; R, rectum; SK,

skin; ST, stomach.
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value of the slope is zero when the expression levels of a

given gene do not differ among tissues samples. Thus, a lower

slope value for a given gene indicates its greater potential as a

reference gene. In addition to the slope, linearity (R2) can also

be an important factor in determining a better reference gene

with similar slope value. Here, we used the R2/slope to

identify novel reference genes, which could be characterized

by higher values (R2/slope) indicating genes with low variations

in expression level.

The results of our data analysis identified several genes

having low mean times standard deviation values and high R2/

slope values. Analysis of the respective copy numbers of these

genes allowed us to select B2M, CGI-119, CTBP1 and

GOLGA1 as possible reference genes, as they showed low

expression variation across individual tissue samples and a

good range of copy numbers (Fig. 1A and B). Of these, B2M

is a previously known, housekeeping gene, whereas the other

three have not previously been identified as housekeeping

genes. Comparison of the means and standard deviations of

tissue sample sets revealed that CGI-110, CTBP1 and GOLGA1

showed lower values than the commonly used housekeeping

genes, GAPD and TUBB (Fig. 2A-F). Furthermore, simple

linear regression of the sorted data revealed that CGI-119,

B2M, CTBP1 and GOLGA1 had lower slope values than

GAPD and TUBB (Fig. 3). The results of these two separate

statistical methods confirmed the same three novel genes

(CGI-110, CTBP1 and GOLGA1) as good candidate

housekeeping genes that may be more stably expressed than

the commonly used housekeeping genes, GAPD and TUBB

(Figs. 1, 2 and 3).

Using the linear regression model, we further analyzed the

expression profiles of the identified stable genes (GOLGA1,

CTBP1, B2M and CGI-119) in the same tissues under different

disease states (Fig. 3B). Although the relative rankings of

their stabilities were somewhat altered, the four tested genes

were more stable in the 23 different cancers than were the

commonly used housekeeping genes, GAPD and TUBB (Fig.

3C). The expression levels of GOLGA1, CTBP1, B2M, CGI-

119, GAPD and TUBB in the different tissues were then

analyzed by linear regression to identify the most stable gene

in each cancer type, regardless of the sampled tissue. GOLGA1,

CTBP1, B2M and CGI-119 showed higher stabilities than

GAPD and TUBB in each cancer type (data not shown).

To validate these array-based analyses, we next performed

real time quantitative RT-PCR analysis. We used gene-specific

primers (see Materials and Methods) to amplify cDNA from

independent sets of normal, cirrhotic and cancerous liver

tissues. The stabilities of GOLGA1, CTBP1 and CGI-119

Fig. 3. Linear regression analysis of FVMs for the reference genes. A and B: FVMs across 281 individual tissue samples and 17 tissue

sample sets, respectively. C: The slope and R2 values for each reference gene from A and B.
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were high in these tissues, while B2M was less stable than

GAPD in this analysis (Table 1). This highlights the limitations

of commonly used housekeeping genes such as B2M, which

may show disease-specific effects. We compared these two

statistical methods to previously developed program, GeNorm

scoring, which uses geometric averaging of multiple internal

control genes. The GeNorm program results indicated that the

three novel genes showed high stability using the same data

set (Table 1). To further examine the tissue specific effect, we

generated cDNA from several laboratory cell lines originating

from different tissues, and tested the expression levels of the

selected genes by real-time quantitative analysis. Again, although

the relative order of the stabilities differed from those in the

microarray analysis, the stabilities of GOLGA1, CTBP1 and

CGI-119 were consistently better than those of the commonly

used housekeeping genes, TUBB and GAPD. To be consistent

with our liver tissue data (Table 1), we further validated our

newly identified housekeeping genes by using GOLGA1,

CTBP1 and CGI-119 as references to normalize the expression

levels of genes having different ranges of copy number, and

found that the use of a reference with a similar copy number

yielded better normalization results (data not shown).

In summary, these results collectively indicate that statistical

analysis of microarray data can be used to identify new

candidate housekeeping genes showing consistent expression

across tissues and diseases. Our analysis identified three new

candidate housekeeping genes (GOLGA1, CTBP1 and CGI-

119) that could prove useful for normalization across a variety

of RNA-based techniques. Importantly, we identified these

genes using the basic statistical tools of geometric mean,

standard deviation and linear regression. All of these functions

are available in the basic Excel package (functions STDEV,

AVEG and Linear Regression), making this method available

to most scientists for study-specific selection of the most

optimal housekeeping genes.
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