The Optimum Stabilization Conditions of TiO2-containing Pitch Fiber

TiO2 함유 피치섬유의 최적 안정화 조건

  • Eom, Sang Yong (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Park, Kwan Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Ryu, Seung Kon (Department of Chemical Engineering, Chungnam National University)
  • 엄상용 (충남대학교 화학공학과) ;
  • 이창호 (충남대학교 화학공학과) ;
  • 박관호 (충남대학교 화학공학과) ;
  • 유승곤 (충남대학교 화학공학과)
  • Received : 2006.11.10
  • Accepted : 2007.03.19
  • Published : 2007.06.30

Abstract

$TiO_2$-containing pitch fibers were prepared and various stabilization variables were investigated by characterizations of the fibers and behaviors of $TiO_2$ particles in the optimum stabilization conditions. When pitch fiber was stabilized by air at the optimum condition, the fiber weight increased as an increase of the stabilization temperature and a decrease of $TiO_2$ concentration. The carbonization yield was 71~82 wt.%, showing a decrease of the yield with the $TiO_2$ increase caused by the catalytic activity of $TiO_2$ to combustion. During the stabilization, newly developed carbonyl and carboxyl groups were introduced on the fiber surface and cross-linking reactions were progressed resulting the thermosetting property, which was verified by the replacement of hydrogen with oxygen. Pore size of the activated carbon fiber was increased by an increase in $TiO_2$ concentration. In the considerations of the aggregation behaviors of the $TiO_2$ particles, the optimum stabilization conditions of 0.5 wt.% $TiO_2$ containing petroleum-based pitch fiber were suggested as $280^{\circ}C$, 3 hr.

$TiO_2$ 함유 피치섬유의 최적 안정화 조건을 도출하기 위하여 $TiO_2$의 함유량을 달리하여 피치섬유를 제조한 후, 여러가지 안정화 조건에 대한 섬유의 특성 변화와 금속입자의 거동을 관찰하였다. 공기에 의한 피치섬유의 안정화시 안정화온도가 높고, $TiO_2$ 함유량이 적을수록 산화에 의한 무게증가가 컸다. 안정화된 섬유를 탄화하면 수율은 71~82 wt.% 수준인데, $TiO_2$가 활성촉매 역할을 하여 $TiO_2$의 함유량이 많을수록 탄화수율은 낮았다. 안정화 과정에서 열가소성의 피치섬유는 산소의 도입으로 카르보닐기(C=O)와 카르복실기(-COOH) 등이 형성되며 동시에 이들이 가교결합을 이루고 수소를 탈리시켜 열경화성 섬유로 전환되었다. 활성탄소섬유의 기공크기는 $TiO_2$ 함유량이 증가함에 따라 점점 커졌으며, 주사전자현미경과 투과전자현미경을 통하여 섬유의 표면과 내부에 분포된 $TiO_2$ 입자와 분포를 관찰한 결과 안정화, 탄화 및 활성화공정 중 일부 $TiO_2$가 서로 뭉침을 알 수 있었다. 최종적으로 0.5 wt.% $TiO_2$ 함유 석유계 피치섬유는 $280^{\circ}C$에서 3 hr를 최적 안정화 조건으로 제시할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국산업기술재단

References

  1. Shigeyuki, K., Hisashi, T., Hajime, Y., Yoshio, Y., Noriko, Y. and Minoru, S.,'Synthesis of Activated Carbon from Organometallics/ coal Composites,' The 23th Conference on Carbon Materials, Chiba, Japan, Dec.(1996)
  2. Narihito, T., Hiroshi, I., Norihiko, S. and Yoshiaki, F., 'Preparation of Titanium Dioxide/activated Carbon Composites Using Supercritical Carbon Dioxide,' Carbon, 43(11), 2358-2365(2005) https://doi.org/10.1016/j.carbon.2005.04.016
  3. Zhang, X., Zhou, M. and Lei, L., '$TiO_2$ photocatalyst Deposition by MOCVD on Activated Carbon,' Carbon, 44(2), 325-33(2006) https://doi.org/10.1016/j.carbon.2005.07.033
  4. Ryu, S. K., Eom, S. Y., Yim, K. S. and Edie, D. D., 'Pore Characteristics of $TiO_2$-Containing Activated Carbon Fibers,' Korean Chem. Eng. Res., 42(3), 288-295(2004)
  5. Donnet, J. B., Wang, T. K., Peng, J. C. M. and Rebouillat, S., 'Carbon Fibers,' 3rd ed., Marcel Dekker Inc., New York, 1-83(1998)
  6. Fitzer, E., Frohs, W. and Heine, M., 'Optimization of Stabilization and Carbonization Treatment of PAN Fibres and Structural Characterization of the Resulting Carbon Fibres,' Carbon, 24(4), 387-395(1986) https://doi.org/10.1016/0008-6223(86)90257-5
  7. Matsumoto, T. and Mochida, I., 'Oxygen Distribution in Oxidatively Stabilized Mesophase Pitch Fibre,' Carbon, 31(1), 143-147 (1993) https://doi.org/10.1016/0008-6223(93)90167-9
  8. Jung, D. H., Lee, Y. S. and Rhee, B. S., 'The Stabilization of Mesophase Pitch Based Carbon Fiber,' HWAHAK KONGHAK, 29(1), 89-96(1991)
  9. Park, Y. D., Mochida, I. and Matsumoto, T., 'Extractive Stabilization of Mesophase Pitch Fiber,' Carbon, 26(3), 375-380(1988) https://doi.org/10.1016/0008-6223(88)90229-1
  10. Lee, J. K., In, S. J., Lee, D. W., Rhee, B. S. and Ryu, S. K., 'Stabilization of the Isotropic Pitch Fibers Drived from Petroleum with Nitric Acid Vapor,' HWAHAK KONGHAK, 28(6), 669-675 (1990)
  11. Suzuki, T. and Hamaguchi, M., Proceedings, the 19th Biennial Conf. on Carbon, Penn. State University, USA, 166(1989)
  12. Lee, J. K., In, S. J., Rhee, B. S. and Ryu, S. K., 'Carbonization of Isotropic Pitch Fiber Oxidized with Nitric Acid Vapor or Hot Air,' HWAHAK KONGHAK, 29(4), 433-439(1991)
  13. Ryu, S. K., Kim, S. Y., Gallego, N. and Edie, D. D., 'Physical Properties of Silver-containing Pitch-based Activated Carbon Fibers,' Carbon, 37(10), 1619-1625(1999) https://doi.org/10.1016/S0008-6223(99)00086-X
  14. Eom, S. Y., Cho, T. H., Cho, K. H. and Ryu, S. K., 'Pore Size Distribution of Metal(Ag, Cu, Co)-containing Activated Carbon Fibers,' HWAHAK KONGHAK, 38(5), 591-596(2000)
  15. Oya, A., Wakahara, T. and Yoshida, S., 'Preparation of Pitch-based Antibacterial Activated Carbon Fiber,' Carbon, 31(8), 1243-1247 (1993) https://doi.org/10.1016/0008-6223(93)90082-L
  16. Kim, M. C., Eom, S. Y., Ryu, S. K. and Edie, D. D., 'Reformation of Naphtha Cracking Bottom Oil for Preparation of Carbon Fiber Precursor Pitch,' Korean Chem. Eng. Res., 43(6), 745-750(2005)
  17. Cho, T. H., Kim, S. Y., Cho, K. H. and Ryu, S. K., 'Melt-spinning of Silver-containing Precursor Pitches,' HWAHAK KONGHAK, 38(3), 338-342(2000)
  18. Yim, K. S., Eom, S. Y., Ryu, S. K. and Edie, D. D., 'Microporosity and Behaviors of Metal(Ag,Cu,Co)-Containing Activated Carbon Fibers,' HWAHAK KONGHAK, 41(4), 503-508(2003)
  19. Lee, Y. S., Basova, Y. V., Edie, D. D., Reid, L. K., Newcombe, S. R. and Ryu, S. K., 'Preparation and Characterization of Trilobal Activated Carbon Fibers,' Carbon, 41(13), 2573-2584(2003) https://doi.org/10.1016/S0008-6223(03)00376-2
  20. Hisashi, T., Shigeyuki, K., Hisashi, T., Makiko, I., Hajime, Y., Takayoshi, K. and Juji, M., 'Synthesis of Mesoporous ACF and Their Adsorption,' The 23th Conference on Carbon Materials, Chiba, Japan, Dec.(1996)
  21. Oya, A., Yoshida, S., Alcaniz-Monge, J. and Linares-Solano, A., 'Formation of Mesopores in Phenolic Resin-Derived Carbon Fiber by Catalytic Activation using Cobalt,' Carbon, 33(8), 1085-1090(1995) https://doi.org/10.1016/0008-6223(95)00054-H
  22. Lu, Y., Zhu, Z. P. and Liu, Z. Y., 'Effect of Catalyst on the Growth of Carbon Nanotubes Using a Detonation Approach,' New carbon materials (China), 19(1), 1-6(2004)
  23. Jung, S. C., Kim, S. C. and Seo, S. G., 'Photocatalytic Activity of the $TiO_2$ Film Grown by Chemical Vapor Deposition,' HWAHAK KONGHAK, 39(4), 385-389(2001)