The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model

유역모형 구축을 위한 8일간격 유량측정자료의 일유량 확장 가능성

  • Kim, Sangdan (Department of Environmental System Engineering, Pukyong National University) ;
  • Kang, Du Kee (Department of Civil Engineering, Pusan National University) ;
  • Kim, Moon Su (Nakdong River Water Environment Laboratory, National Institute of Environmental Research Ministry of Environment) ;
  • Shin, Hyun Suk (Department of Civil Engineering, Pusan National University)
  • 김상단 (부경대학교 환경시스템공학부) ;
  • 강두기 (부산대학교 토목공학과) ;
  • 김문수 (국립환경과학원 낙동강물환경연구소) ;
  • 신현석 (부산대학교 토목공학과)
  • Received : 2006.10.11
  • Accepted : 2006.11.22
  • Published : 2007.01.30

Abstract

In this study daily flow data is constructed from 8-day intervals flow data which has been measured by Nakdong River Water Environmental Laboratory. TANK model is used to expand 8-day intervals flow data into daily flow data. Using the Sequential quadratic programing, TANK model is auto-calibrated with daily precipitation and 8-day interval flow data. Generated and measured daily surface flow, ground water flow data and ground water recharge are shown to be in a good agreement. From this result, it is thought that this method has the potential to provide daily flow data for calibrating an watershed model such as SWAT.

Keywords

References

  1. 강신욱 , 이동률, 이상호, 토양수분 저류구조를 가진 탱크모형의 보정에 관한 연구, 한국수자원학회논문집, 37, pp. 133-144 (2004)
  2. 국립환경과학원, 낙동강 수계 제2차 오염총량관리 기준설정 연구(기준유량 안전율, 목표수질설정 연구), 환경부 (2006)
  3. 김상단, 이건행, 김형수, 장기유출 수문모형을 이용한 하천 수질모형의 기준유량 산정, 수질보전 한국물환경학회지, 21(6), pp. 575-583 (2005)
  4. 배덕효, 정일원, 강태호, 노준우, 유출성분을 고려한 Tank 모형의 매개변수 자동추정, 한국수자원학회논문집, 36, pp. 423-436 (2003)
  5. 성윤경, 김상현, 김현준, 김남원, 다양한 목적함수와 최적화 방법을 달리한 SIMHYD와 TANK모형의 적용성 연구, 한국수자원학회논문집, 37, pp. 121-131 (2004)
  6. 한국건설기술연구원, 지표수 수문성분 해석기술 개발, 과학기술부 (2004)
  7. Arnold, J. G. and Allen, P. M., Validation of Automated Methods for Estimating Base Flow and Groundwater Recharge from Stream Flow Records, J. Am. Water Resour. Assoc, 35, pp. 411-424 (1999) https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  8. Gill, P. E., Murray, W. and Saunders, M. A., User's Guide for SNOPT 5.3: A FORTRAN Package for Large-scale Nonlinear Programming, University of California, San Diego (1999)
  9. Lyne, V. and Hollick, M., Stochastic Time Variable Rainfall Runoff Modeling. Hydrology and Water Resources Symposium Berth, 1979, Proceedings, National Committee on Hydrology and Water Resources of the Institution of Engineers, Australia, pp. 89-92 (1979)
  10. Nash, J. E. and Sutcliffe, J. V., River Flow Forecasting through Conceptual Models Part 1 - A Discussion of Principles, Journal of Hydrology, 10, pp. 282-290 (1970) https://doi.org/10.1016/0022-1694(70)90255-6
  11. Nathan, R. J. and McMahon, A. T., Evaluation of Automated Techniques for Baseflow and Recession Analysis, Water Resour. Res., 26, pp. 1465-1473 (1990)
  12. Rorabaugh, M. I., Estimating Changes in Bank Storage and Groundwater Contribution to Streamflow, Int. Assoc. Sci. Hydrol, 63, pp. 432-441, (1964)
  13. Santhi, C, Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R. and Hauck, L. M., Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources, J. Am. Water Resour. Assoc, 37, pp. 1169-1188 (2001) https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  14. Sugawara, M., Tank Model, in Computer Models of Watershed Hydrology, Water Resources Publications, pp. 164-214 (1995)