유전체 장벽 방전에 의한 벤젠의 분해

Decomposition of Benzene by Dielectric Barrier Discharge

  • 이용훈 (인하대학교 화학공학과/열플라즈마환경기술연구센터) ;
  • 이재호 (인하대학교 화학공학과/열플라즈마환경기술연구센터) ;
  • 박동화 (인하대학교 화학공학과/열플라즈마환경기술연구센터)
  • Lee, Yong Hun (Department of Chemical Engineering and RIC-ETTP (Regional Innovation Center for Environmental Technology of Thermal Plasma), Inha University) ;
  • Lee, Jae-Ho (Department of Chemical Engineering and RIC-ETTP (Regional Innovation Center for Environmental Technology of Thermal Plasma), Inha University) ;
  • Park, Dong-Wha (Department of Chemical Engineering and RIC-ETTP (Regional Innovation Center for Environmental Technology of Thermal Plasma), Inha University)
  • 투고 : 2006.12.15
  • 심사 : 2007.05.03
  • 발행 : 2007.06.10

초록

본 연구에서는 유전체장벽방전을 이용하여 휘발성 유기화합물의 일종인 벤젠의 분해 경향과 분해 생성물의 선택성에 대해서 연구하였다. 유전체장벽방전의 공정변수에 따른 벤젠의 분해율과 분해 생성물의 선택성을 높이기 위해서 반응기 내부에 촉매(H-ZSM-5, Na-Y)를 사용하였다. 실험은 대기압에서 수행하였으며, 방전전압, 체류시간, 농도 등의 공정변수에 따른 분해율을 조사하였다. 유전체 장벽방전만을 사용하는 방법과 비교하여 여기에 촉매를 동시에 사용하는 하이브리드 방전이 같은 전압과 체류시간조건에서 보다 효과적인 벤젠의 분해 방법임을 확인하였다.

Decomposition of benzene and selectivity of byproducts were investigated by using Dielectric Barrier Discharge (DBD) at atmospheric pressure. In order to increase the decomposition rate and selectivity of byproducts, two types of catalysts, H-ZSM-5 and Na-Y, were optionally employed inside the reactor of the process. The decomposition efficiency of benzene was investigated on the DBD and DBD/catalyst systems at various processing parameters including discharge voltage, residence time, and concentration of benzene. The results showed that, compared with the DBD only, the catalyst-assisted DBD process as a hybrid discharge type had an improved decomposition efficiency at the same process conditions of discharge voltage and residence time

키워드

과제정보

연구 과제 주관 기관 : 인하대학교

참고문헌

  1. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Process., 19, 383 (1999)
  2. S.-M. Oh, H.-H. Kim, A. Ogata, H. Einaga, S. Futamura, and D.-W. Park, Catalysis Letters, 99, 101 (2005)
  3. S.-M. Oh, H.-H. Kim, H. Einaga, A. Ogata, S. Futamura, and D.-W. Park, Thin Solid Films, 506, 418 (2006)
  4. A. Zhang, S. Futamura, and T. Yamamoto, J. Air & Waste Manage. Assoc., 49, 1442 (1999)
  5. H.-C. Kang, I.-S. Woo, and A.-S. Kang, J. Ind. Eng. Chem., 6, 231 (2000)
  6. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, IEEE Trans. Ind. Appl., 35, 1289 (1999)
  7. H. Kohno, A. A Berezin, J.-S. Chang, M. Tamura, T. Yamamoto, A. Shibuya, and S. Honda, IEEE Trans. Ind. Appl., 34, 953 (1998)
  8. J. F. Xia, X. X. Gao, J. Y. Kong, H. X. Hui, M. Cui, and K. P. Yan, Plasma Chem. Plasma Process., 20, 225 (2000) https://doi.org/10.1023/A:1007069123634
  9. T. Yamamoto, J.-S. Chang, A. A Berezin, H. Kohno, S. Honda, and A. Shibuya, J. Adv. Oxid. Technol., 1, 67 (1996)
  10. H. Einaga, T. Ibusuki, and S. Futamura, Conf. Rec. 2000 IEEE Trans. Ind. Appl., 2, 858 (2000)
  11. J.-S. Chang, T. Myint, A. Chakrabarti, and A. Miziolek, Japanese J. Appl. Phys., 36, 5018 (1997)
  12. K. P. Francke, H. Miessner, and R. Rudolph, Catalysis Today, 59, 411 (2000) https://doi.org/10.1016/S0920-5861(00)00306-0
  13. J.-S. Chang, J. Aerosol Sci., 20, 1089 (1989)
  14. I.-S. Woo, H.-C. Kang, J.-K. Cho, M.-W. Hwang, A.-S. Kang, and M. Yamaguma, J. Ind. Eng. Chem., 7, 105 (2001)