DOI QR코드

DOI QR Code

Characterization of Peptide Deformylase2 from B. cereus

  • Park, Joon-Kyu (Life Sciences Division, Korea Institute of Science and Technology) ;
  • Kim, Kook-Han (Life Sciences Division, Korea Institute of Science and Technology) ;
  • Moon, Jin-Ho (Life Sciences Division, Korea Institute of Science and Technology) ;
  • Kim, Eunice Eun-Kyeong (Life Sciences Division, Korea Institute of Science and Technology)
  • Published : 2007.11.30

Abstract

Peptide deformylase (PDF) is a metalloenzyme that removes the N-terminal formyl groups from newly synthesized proteins. It is essential for bacterial survival, and is therefore-considered as a potential target for antimicrobial chemotherapy. However, some bacteria including medically relevant pathogens possess two or more def-like genes. Here we have examined two PDFs from Bacillus cereus. The two share only 32% sequence identity and the crystal structures show overall similarity with PDF2 having a longer C-terminus. However, there are differences at the two active sites, and these differences appear to contribute to the activity difference seen between the two. BcPDF2 is found as a dimer in the crystal form with two additional actinonin bound at that interface.

Keywords

References

  1. Apfel, C., Banner, D. W., Bur, D., Dietz, M., Hiraa, T., Hubschwerlen, C. Locher H., Page, M. G., Pirson, W., Rosse, G. and Specklin, J. L. (2000) Hydroxamic acid derivatives as potentent peptide deformylase inhibitors and antibacterial agents. J. Med. Chem. 43, 2324-2331. https://doi.org/10.1021/jm000018k
  2. Ball, L. A. and Kaesberg, P. (1973) Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro. J. Mol. Biol. 79, 531-537. https://doi.org/10.1016/0022-2836(73)90404-X
  3. Baldwin, E. T., Harris, M. S., Yem, A. W., Wolfe, C. L., Vosters, A. F., Curry, K. A., Murray, R. W., Bock, J. H., Marshall, V. P., Cialdella, J. I., Merchant, M. H., Choi, G. and Deibel Jr, M. R. (2002) Crystal structure of type II peptide deformylase from Staphylococcus aureus. J. Biol. Chem. 277, 31163-31171. https://doi.org/10.1074/jbc.M202750200
  4. Becker, A., Schlichting, I., Kabsch, W., Groche, D., Schultz, S. and Wagner, A. F. V. (1998) Iron center, substrate recognition and mechanism of peptide deformylase. Nat. Struct. Biol. 5, 1053-1058. https://doi.org/10.1038/4162
  5. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921. https://doi.org/10.1107/S0907444998003254
  6. Chen, D. Z., Patel, D. V., Hackbarth, C. J., Wang, W., Dreyer, G., Young, D. C., Margolis, P. S., Wu, C., Ni, Z. J., Trias, J., White, R. J. and Yuan, Z. (2000) Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39, 1256-1262. https://doi.org/10.1021/bi992245y
  7. Ednie, L. M., Pankuch, G. and Appelbaum, P. C. (2004) Antipneumococcal activity of LBM415, a new peptide diformylase inhibitor, compared with those of other agents. Antimicrob. Agents Chemother. 48, 4027-4032. https://doi.org/10.1128/AAC.48.10.4027-4032.2004
  8. Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  9. Fieulaine, S., Juillan-Binard, C., Serero, A., Dardel, F., Giglione, C., Meinnel, T. and Ferrer, J. L. (2005) The crystal structure of mitochondrial (Type 1A) peptide deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms. J. Biol. Chem. 280, 42315-42324. https://doi.org/10.1074/jbc.M507155200
  10. Giglione, C., Serero, A., Pierre, M., Boisson, B. and Meinnel, T. (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanism. EMBO J. 19, 5916-5929. https://doi.org/10.1093/emboj/19.21.5916
  11. Gouet, P., Courcelle, E., Stuart, D. I. and Metoz, F. (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308. https://doi.org/10.1093/bioinformatics/15.4.305
  12. Guilloteau, J. P., Mathieu, M., Giglione, C., Blanc, V., Dupuy, A., Chevrier, M., Gil, P., Famechon, A., Meinnel, T. and Mikol, V. (2002) The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J. Mol. Biol. 320, 951-962. https://doi.org/10.1016/S0022-2836(02)00549-1
  13. Haas, M., Beyer, D., Gahlmann, R. and Freiberg, C. (2001) YrkB is the main peptide deformylase in Bacillus subtilis, a eubacterium containing two functional peptide deformylases. Microbiology 147, 1783-1791. https://doi.org/10.1099/00221287-147-7-1783
  14. Han, C., Wang, Q., Dong, L., Sun, H., Peng, S., Chen, J., Yang, Y., Yue, J., Shen, X. and Jiang, H. (2004) Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori. Biochem. Biophy. Res. Commun. 319, 1292-1298. https://doi.org/10.1016/j.bbrc.2004.05.120
  15. Jain, R., Chen, D., White, R. J., Patel, D. V. and Yuan, Z. (2005) Bacterial peptide deformylase inhibitors: a new class of antibacterial agents. Curr. Med. Chem. 12, 1607-1621. https://doi.org/10.2174/0929867054367194
  16. Kreusch, A., Spraggon, G., Lee, C. C., Klock, H., McMullan, D., Ng, K., Shin, T., Vincent, J., Warner, I., Ericson, C. and Lesley, S. A. (2003) Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. J. Mol. Biol. 330, 309-321. https://doi.org/10.1016/S0022-2836(03)00596-5
  17. Lazennec, C and Meinnel, T. (1997) Formate dehydrogenasecoupled spectrophotometric assay of peptide deformylase. Anal. Biochem. 244, 180-182. https://doi.org/10.1006/abio.1996.9910
  18. Leeds, J. A. and Dean, C. R. (2006) Peptide deformylase as an antibacterial target: a critical assessment. Curr. Opin. Pharmacol. Rev. 6, 445-452. https://doi.org/10.1016/j.coph.2006.06.003
  19. Li, Y., Chen, Z. and Gong, W. (2002) Enzymatic properties of a new peptide deformylase from pathogenic bacterium Leptospira interrogans. Biochem. Biophy. Res. Commun. 295, 884-889. https://doi.org/10.1016/S0006-291X(02)00777-5
  20. Lofland, D., Difuntorum, S., Waller, A., Clements, J. M., Weaver, M. K., Karlowsky, J. A. and Johnson, K. (2004) Related Articles, In vitro antibacterial activity of the peptide deformylase inhibitor BB-83698. J. Antimicrob. Chemother. 53, 664-668. https://doi.org/10.1093/jac/dkh129
  21. Lou, B. and Yang, K. (2003) Molecular diversity of hydroxamic acids: part II. Potential therapeutic applications. Mini Rev. Med. Chem. 3, 609-620. https://doi.org/10.2174/1389557033487872
  22. Margolis, P. S., Hackbarth, C. J., Young, D. C., Wang, W., Chen, D., Yuan, Z., White, R. and Trias, J. (2000) Peptide deformylase in Staphylococcus aureus: resistant to inhibition is mediated by mutations in the formyl transferase gene. Antimicrob. Agents Chemother. 44, 1825-1831. https://doi.org/10.1128/AAC.44.7.1825-1831.2000
  23. Margolis, P. S., Hackbarth, C. J., Lopez, S., Maniar, M., Wang, W., Yuan, Z., White, R. and Trias, J. (2001) Resistance of Streptococcus pneumoniae to deformylase inhibitors is due to mutation in defB. Antimicrob. Agents Chemother. 45, 2432-2435. https://doi.org/10.1128/AAC.45.9.2432-2435.2001
  24. Matthews, B. W. (1968) Solvent content of protein crystals. J. Mol. Biol. 33, 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
  25. Moon, J. H., Park, J. K. and Kim, E. E. (2005) Structure analysis of peptide deformylase from Bacillus cereus. Proteins 61, 217-220. https://doi.org/10.1002/prot.20526
  26. Muri, E. M., Nieto, M. J. Sinderlar, R. D. and Williamson, J. S. (2002) Hydroxamic acids as pharmacological agents. Curr. Med. Chem. 9, 1631-1653. https://doi.org/10.2174/0929867023369402
  27. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected on oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  28. Park, J. K., Moon, J. H., Kim, J. H. and Kim, E. E. (2005) Crystallization and preliminary X-ray crystallographic analysis of peptide deformylase (PDF) from Bacillus cereus in ligand free and actinonin-bound forms. Acta Crystallogr. Sect F. 61, 150-152. https://doi.org/10.1107/S1744309104032440
  29. Ragusa, S., Blaquet, S. and Meinnel, T. (1998) Control of peptide deformylase activity by metal cations. J. Mol. Biol. 280, 515-523. https://doi.org/10.1006/jmbi.1998.1883
  30. Rajagopalan, P. T. R., Yu, X. C. and Pei, D. (1997) Peptide deformylase: a new type of mononuclear iron protein. J. Am. Chem. Soc. 119, 12418-12419. https://doi.org/10.1021/ja9734096
  31. Srivaths, P. R., Rozans, M. K., Kelly Jr, E. and Venkateswaran, L. (2004) Bacillus cereus central line infection in an immunocompetent child with hemophilia. J. Pediatr. Hematol. Oncol. 26, 194-196. https://doi.org/10.1097/00043426-200403000-00010
  32. Terwilliger, T. (2004) SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49-52. https://doi.org/10.1107/S0909049503023938
  33. Yuan, Z. and White, R. J. (2006) The evolution of peptide deformylase as a target: contribution of biochemistry, genetics and genomics. Biochem. Pharmacol. Rev. 71, 1042-1047. https://doi.org/10.1016/j.bcp.2005.10.015
  34. Zhang, X., Zhang, S., Hao, F., Lai, X., Yu, H., Huang, Y. and Wang, H. (2005) Expression, purification and properties of Shikimate dehydrogenase from Mycobacterium Tuberculosis. J. Biochem. Mol. Biol. 38, 624-631. https://doi.org/10.5483/BMBRep.2005.38.5.624
  35. Zhou, Z., Song, X., Li, Y. and Gong, W. (2004) Unique structural characteristics of peptide deformylase from pathogenic bacterium Leptospira interrogans. J. Mol. Biol. 339, 207-215. https://doi.org/10.1016/j.jmb.2004.03.045

Cited by

  1. Peptide deformylase – a promising therapeutic target for tuberculosis and antibacterial drug discovery vol.13, pp.7, 2009, https://doi.org/10.1517/14728220903005590
  2. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals vol.5, pp.3, 2016, https://doi.org/10.3390/antibiotics5030030
  3. N-terminal protein modifications: Bringing back into play the ribosome vol.114, 2015, https://doi.org/10.1016/j.biochi.2014.11.008
  4. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity vol.435, pp.2, 2013, https://doi.org/10.1016/j.bbrc.2013.04.026