Effect of Organic Melecular Weight and Functional Group on Membrane Fouling

막오염에 미치는 유기물 분자량 분포특성 및 화학적 구조특성

  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park) ;
  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter) ;
  • Shin, Hyun-Sool (Division of Civil Engineering, Pukyong National University) ;
  • Sohn, In-Shik (Division of Civil Engineering, Pukyong National University)
  • 정철우 (울산산업진흥 테크노파크 전략산업기획단) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 신현준 (부경대학교 건설공학부) ;
  • 손인식 (부경대학교 건설공학부)
  • Received : 2007.04.18
  • Accepted : 2007.05.29
  • Published : 2007.12.31

Abstract

The raw water was fractionated into hydrophobic (HPO), transphilic (TPI), and hydrophilic portions (HPI) using XAD resins. The raw water DOC contains 39% of hydrophilics, 43% of hydrophobics, and 18% of transphilics. When fractionated NOM (natural organic matter) was passed through hydrophilic membrane with 100 kDa, hydrophobic portion (HPO) caused the most fouling and hydrophilic portion (HPI) caused the least fouling. This could be related to size and adsorption capability of organics. Small sized organics would pass through membrane pores, but large sized organics would be attracted to either membrane pores or surface, which led to the fouling. An effect of membrane pore size on membrane fouling is related to the availability of organics at membrane pores. As the pore size became larger, the more organics were transported into the membrane pore. Some organics caused pore blocking, and others caused pore adsorption, which resulted in membrane fouling. Membrane material is also important for membrane fouling. More fouling occurred at hydrophobic membrane than hydrophilic membrane regardless of its pore size. Hydrophobic interaction caused more fouling at hydrophobic membrane.

낙동강 매리지역 원수에 대해 유기물 성상분석을 한 결과, 소수성 물질이 43%, 친수성 물질이 39%, 반친수성 물질이 18%를 차지하고 있는 것으로 나타났으며, 각각의 유기물질에 대한 분자량 크기 분포 특성을 살펴보면 소수성 > 반친수성 > 친수성 물질의 순으로 분자량 분포특성을 보였다. 막 공극 크기에 따른 영향을 살펴본 결과 막 공극 크기가 증가할수록 공극 내에서 공극 막힘현상과 공극 흡착현상이 막오염의 주된 메카니즘으로 작용하여 투과 flux 감소율이 크게 나타나는 것으로 조사되었다. 막의 재질에 따른 영향을 살펴본 결과 소수성 막의 경우 친수성 막에 비하여 소수성 상호반응(hydrophobic interaction)에 의하여 유기물에 의한 막 오염 현상이 발생하여 투과 flux 감소율이 더 크게 나타나고 초기 투과 flux 감소율도 빠르게 진행되었다. 원수에 대한 막의 재질과 막의 공극크기에 따른 막오염 메카니즘 분석결과 소수성 재질의 막에서 막표면 오염을 나타내는 Kc, 막의 공극흡착현상을 나타내는 Ks, 막의 공극 막힘현상을 나타내는 Ki 값이 상대적으로 크게 나타났다. 막의 공극 크기에 따른 막 오염 메카니즘 분석결과 막의 100 kDa 이상의 공극이 큰막의 경우에는 소수성 계열의 유기물이 막의 공극 내부에서 막 오염을 유발하였으며, 10 kDa 정도로 공극이 작은 막의 경우 소수성과 친수성 계열 유기물이 막 표면에서 막 오염을 유발하는 메카니즘이 주원인으로 작용하였다

Keywords

References

  1. Wiesner, M. R. and Chellam, S., 'The Promise of Membrane Technology an Expanded Understanding of Membrane Technology is Fostering New Environmental Applications,' Envi. Sci. & Technol., 33(17), 360-366(1999) https://doi.org/10.1021/es993008l
  2. Schafer, A. I., Mauch, R., Waite, T. D. and Fane, A. G., 'Charge Effects in the Fractionation of Natural Organics Using Ultrafiltration,' Environ. Sci. Technol. 36(12), 2572(2002) https://doi.org/10.1021/es0016708
  3. Kaya, Y., Itoh, Y., Fujita, K. and Takizawa, S., 'Study on Fouling Materialsin the Membrane Treatment Process for Potable Water,' Desalination, 106(1), 71-77(1996) https://doi.org/10.1016/S0011-9164(96)00094-X
  4. Turcaud, V. L., Wiesner, M. and Botero, J.Y., 'Fouling in Tangential-flow Ultrafiltration: the Effect of Colloid Size and Coagulation Pretreatment,' J. Membr. Sci. 52(2), 173-190(1990) https://doi.org/10.1016/S0376-7388(00)80484-6
  5. Yuan, W. and Zydney, L., 'Humic Acid Fouling During Ultrafiltration,' Environ. Sci. Technol. 34, 5043-5050(2000) https://doi.org/10.1021/es0012366
  6. Braghetta, A., DiGiano, F. and Ball, W. P., 'Nanofiltration of Natural Organic Matter: pH and Ionic Strength Effects,' J. Environ. Eng., 123, 628-641(1997) https://doi.org/10.1061/(ASCE)0733-9372(1997)123:7(628)
  7. Conte, P. and Piccolo, A., 'Conformational Arrangement of Dissolved Humic Substances. Influence of Solution Composition on Association of Humic Molecules,' Environ. Sci. Technol. 33(10), 1682(1999) https://doi.org/10.1021/es9808604
  8. Laine, J. M., Campos, C., Baudin, I. and Janex, M. L., Understanding membrane fouling; A review of over a decade of resource. Proceedings IWA, ISSN 0941-0961(2002)
  9. Amy, G. and Cho, J., 'Interaction Between Natural Organic Matter and Membrane: Rejection and Fouling,' J. Water Sci. & Tech. 40(9), 131-139(1999)
  10. Jung, C. W. and Kang, L. S., 'Application of Combined Coagulation-Ultrafiltration Membrane Process for Water Treatment,' Korean J. Chemi. Eng., 20(5), 855-861(2003) https://doi.org/10.1007/BF02697288
  11. Lin, A., Wu, R. C., Eschenazi, E. and Papadopoulos, K., 'AFM on Humic Acid Adsorption on Micro. Colloids Surface,' Physicochem. Eng. 174, 245-252(2000) https://doi.org/10.1016/S0927-7757(00)00535-5
  12. Carroll, T., King, S. and Booker, N. A., Water Res., 34(11), 2861-2868(2000) https://doi.org/10.1016/S0043-1354(00)00051-8
  13. Fan, L., Harris, J. L., Roddick, F. A. and Brooker, N. C., 'Influnce of the Characteristics of Natural Organic Matter on the Fouling of Microfiltration Membranes,' Wat. Res. 35(18), 4455-4463(2001) https://doi.org/10.1016/S0043-1354(01)00183-X
  14. Hermia, J., 'Constant Pressure Blocking Filtration Laws: Application to Power-law Non-newtonian Fluids,' Trans. Inst. Chem. Eng., 60, 183(1982)
  15. Li, C. W. and Chen, Y. S., 'Fouling of UF Membrane by Humic Substance: Effects of Molecular Weight and Powder-activated Carbon (PAC) Pre-treatment,' Desalination 170(1), 59-57(2004) https://doi.org/10.1016/j.desal.2004.03.015
  16. Aoustin, E., Schafer, A. I., Fane, A. G. and Waite, T. D., 'Ultrafiltration of Natural Organic Matter,' Sep. and Puri. Tech., 22(23), 63-78(2001) https://doi.org/10.1016/S1383-5866(00)00143-X
  17. Jung, C. W., Han, S. W. and Kang, L. S., 'Characteristic of Organic Substances Adsorption onto Membrane Materials,' J. Korean society of environmental engineers, 24(8), 1339-1348(2002)
  18. Jonsson, A. S. and Jonsson, B., 'The Influnce of Nonionic And Ionic Surfactants on Hydrophobic and Hydrophilic Ultrafiltration Membranes,' J. membrane Sci., 56(1), 49-76(1991) https://doi.org/10.1016/0376-7388(91)85015-W
  19. Reckhow, D. A., Bose, P., Bezbarua, B., Hesse, E. M. and Mcknight, A. P., 'Transformations of Natural Organic Material during Preozonation,' EPA Report, U.S. Environmental Protection Agency, Drinking Water Research Division, Cincinnati, Ohio(1992)
  20. Tipping, E. and Ohnstad, M., 'Aggregation of Aquatic Humic Substances,' Chem. Geol., 44(4), 349-357(1984) https://doi.org/10.1016/0009-2541(84)90148-7
  21. Son, H. J., Hwang, Y. D., Roh, J. S., Ji, K. W., Sin, P. S., Jung, C. W. and Kang, L. S., 'Application of MIEX(R) Pre-treatment for Ultrafiltration Membrane Process for NOM Removal and Fouling Reduction,' Water Sci. & Technol.: Water Supply, 5(5), 15-24(2005)