DNA damages with Fpg/Endo Ⅲ FLARE Assay in cynomolgus monkeys exposed to stainless steel welding fume

용접흄 흡입노출 영장류에서 Fpg/Endo Ⅲ FLARE Assay를 이용한 DNA 손상 및 회복

  • Rim, Kyung Taek (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Kim, Soo Jin (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Chung, Yong Hyun (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Kim, Hyeon Yeong (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Maeng, Seung Hee (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Yu, Il Je (Biosafety Evaluation Headquarter, Korea Environment & Merchandise Testing Institute)
  • 임경택 (한국산업안전공단 산업안전보건연구원 화학물질안전보건센터 독성연구팀) ;
  • 김수진 (한국산업안전공단 산업안전보건연구원 화학물질안전보건센터 독성연구팀) ;
  • 정용현 (한국산업안전공단 산업안전보건연구원 화학물질안전보건센터 독성연구팀) ;
  • 김현영 (한국산업안전공단 산업안전보건연구원 화학물질안전보건센터 독성연구팀) ;
  • 맹승희 (한국산업안전공단 산업안전보건연구원 화학물질안전보건센터 독성연구팀) ;
  • 유일재 (한국생활환경시험연구원 안전성평가본부)
  • Received : 2007.06.07
  • Accepted : 2007.11.20
  • Published : 2007.12.31

Abstract

선박제조업을 비롯한 운송업 및 건축업 등의 다양한 분야에서 용접기술이 이용되어 옴에 따라 용접근로자들에 대한 산업보건학적 관심이 높아지고 있다. 노출정도가 다양하기는 하지만 용접흄은 6가 크롬을 비롯한 금속화합물과 유해가스, 화학물질 등을 복합적으로 포함하고 있는 스테인레스 스틸 용접흄에 대한 유전독성영향을 평가하기 위하여 흡입챔버를 이용, 실험동물인 영장류에 스테인레스 스틸 용접흄을 노출시키고 혈액 내 lymphocytes에 생성된 용접흄 노출농도 및 시간별 DNA 손상정도 및 그 회복효소를 측정함으로써, 유해성이 완전하게 확인되지 않은 용접흄에 노출되어 나타날 수 있는 암을 비롯한 심각한 건강영향을 예방하기 위한 각 지표들을 찾아 그 유용성을 비교하고자 하였다. 영장류를 노출시키기 위해 robotic arm을 장치한 영장류 흡입노출 시스템을 개발하였으며, 이 노출 시스템을 이용하여 수컷 영장류 6마리에 대해 용접흄 노출시험을 실시하였는데 실험군은 대조군 2, 저농도 ($31mg/m^3$) 노출군 2, 고농도 ($63mg/m^3$) 노출군 2마리로 구성하였고, 1일 2시간씩 일주일에 5일 동안 용접흄에 노출시켰다. 노출 농도는 지속적으로 모니터링 하였고, 노출과정 중에 영장류의 혈액을 채취하여 lymphocytes를 분리, 단세포 DNA 손상을 선별하기 위해 DNA 손상회복 효소인 E. coli formamidopyrimidine-DNA glycosylase (Fpg)와 endonuclease Ⅲ (Thymine Glycol-DNA glycosylase) 투여와 Comet asaay (single cell gel electrophoresis, 단세포겔전기영동기법)를 결합시켜 이용하는 Fpg/Endo III FLARE 분석법을 사용하였다. Fpg enzyme에 의한 olive tail moment값의 변화는 16주 노출군부터 노출부검(34주)군 까지 노출농도가 높아짐에 따른 olive tail moment 기하평균 값의 양 반응관계를 보기는 어렵지만, 고농도군의 경우 27주 노출군에서 가장 높은 olive tail moment 값을 보이고 이후 차츰 감소하였다. 한편 16주에서 22주까지의 노출기간에서는 대조군에 비해 노출군에서 DNA손상정도(olive tail moment값)는 모두 유의하게 높았으나, 6, 12, 18, 25, 31, 33, 35주간 노출하였을 때는 다른 결과를 보였다. 각 실험군의 Fpg enzyme에 의한 tail length값의 분포를 살펴볼 때, 저농도군 및 고농도군에서 27주간 노출하였을 때 가장 높은 tail length 값을 보이고 이후 차츰 감소하는 경향을 보였다. 또한 16, 22주간 노출하였을 때 대조군에 비해 노출군에서 tail length 값이 유의하게 높았으나, 20주간에서만 양 반응관계가 관찰되었고, 다른 주간에서는 양 반응 및 기간 반응관계를 나타내지는 않았다. Endo III enzyme에 의한 olive tail moment값의 변화는 기간별 노출군에서 대조군에 비해 높은 DNA손상정도(olive tail moment값)를 나타내는 결과들이 있었지만, 10, 12, 16, 22, 25, 31주간 노출하였을 때 등 상당수 노출기간에서 반응관계를 나타내지는 않았다. 각 실험군의 Endo III enzyme에 의한 tail length값의 분포를 살펴볼 때, 18, 20, 27, 33주간 노출하였을 때 대조군에 비해 노출군에서 tail length 값이 조금 높았지만, 양 반응 및 기간 반응관계를 보이지 않았고 수치의 크기가 불규칙하게 변화하였다. 즉, DNA에 있어 산화된 pyrimidine을 형성하여 손상된 부위의 염기를 제거함으로써 AP site (abasic site)를 만들고 이들이 Comet assay를 통해 break로 전환된 것을 포함한 DNA손상을 측정하기 위하여 endonuclease III (Endo III)를 첨가시킨 Endo III FLARE 분석법을 실시한 결과, 본 연구에서 나타난 결과는 용접흄 노출 영장류에서 Olive tail moment 및 tail length 공히 노출량 및 노출기간 반응관계를 볼 수 없었다. Endo III FLARE 분석법을 통한 산화적 DNA 손상지표는 영장류에 적용하기에는 적응반응현상으로 대조군과 유의한 차이도 관찰할 수 없었고 더욱이 역으로 대조군에서의 자연발생적 수치가 더 높아질 수 있어 용접흄 노출 영장류의 모니터링 지표로 사용하기에는 제한점이 있었다.

Keywords

References

  1. Anderson D, Yu T-W, Phillips BJ, Schmerzer P (1994). The effect of various antioxidants and other modifying agents on oxygenradical- generated DNA damage in human lymphocytes in the COMET assay. Mutation Research. 307, 261-271 https://doi.org/10.1016/0027-5107(94)90300-X
  2. Asami S, Hirano T., Yamaguchi R, Tsurudome Y, Itoh T, Kasai H (1998). Effects of forced and spontaneous exercise on 8-hydroxydeoxyguanosine levels in rat organs. Biochemical and Biophysical Research Communications. 243, 678-682 https://doi.org/10.1006/bbrc.1998.8166
  3. Asmuss M, Mullenders LH, Eker A, Hartwig A (2000). Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis. 21, 2097-2104 https://doi.org/10.1093/carcin/21.11.2097
  4. Collins AR, Dobson V, Dusinska M, Kennedy G, Stetina R (1997). The comet assay: what can it really tell us? Mutation Research. 375, 183-193 https://doi.org/10.1016/S0027-5107(97)00013-4
  5. Collins AR, Duthie SJ, Dobson VL (1993). Direct enzymatic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis. 14, 1733-1735 https://doi.org/10.1093/carcin/14.9.1733
  6. Covallo O, Ursini CL, Setini A, Chianese C, Piegari P, Perniconi B, Iavicoli S (2003). Evaluation of oxidative damage and inhibition of DNA repair in an in vitro study of nickel exposure. Toxicology in Vitro. 17, 603-607 https://doi.org/10.1016/S0887-2333(03)00138-3
  7. Fairbairn DW, Olive PL, O'Neill KL (1995). The comet assay: A comprehensive review. Mutation Research. 339, 37-59 https://doi.org/10.1016/0165-1110(94)00013-3
  8. Gedik CM, Ewen SWB, Collins AR (1992). Single cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. International Journal of Radiation Biology. 62, 313-320 https://doi.org/10.1080/09553009214552161
  9. Halliwell B, Dizdaroglu M (1982). The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radical Research Communications. 16, 75-87 https://doi.org/10.3109/10715769209049161
  10. Hartwig A (1998). Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicology Letters. 102-103, 235-239
  11. Henriksson H, Tj?lve H (2000) Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicological Sciences. 55, 392-398 https://doi.org/10.1093/toxsci/55.2.392
  12. Ikushima T (1989). Radioadaptive response: characterization of a cytogenetic repair induced by low-level ionizing radiation in cultured Chinese hamster cells. Mutation Research Letters. 227, 241-246 https://doi.org/10.1016/0165-7992(89)90104-8
  13. Itoh M, Nakamura M, Suzuki T, Kawaki K, Horitsu H, Takamizawa K (1995). Mechanism of chromium (VI) toxicity in Escherichia coli: is hydrogen peroxide essential in Cr (VI) toxicity? Journal of Biochemistry (Tokyo). 117, 780-786 https://doi.org/10.1093/oxfordjournals.jbchem.a124776
  14. Jekinson AM, collins AR, Duthie SJ, Wahle KWJ, Duthie GG (1999). The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes. The FASEB Journal. 13, 2138-2142 https://doi.org/10.1096/fasebj.13.15.2138
  15. Jelmert O, Hansteen I-L, Langard S (1994). Chromosome damage in lymphocytes of stainless steel welders related to past and current exposure to manual metal arc welding fumes. Mutation Research. 320, 223-233 https://doi.org/10.1016/0165-1218(94)90049-3
  16. Kamiya H, Miura K, Ishikawa H, Inoue H, Nishimura S, Ohtsuka E (1992). c-Ha-ras containing 8-hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions. Cancer Research. 52, 3483-3485
  17. Kasai H (1997). Analysis of a form of oxidative DNA damage, 8- hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research. 387, 147-163 https://doi.org/10.1016/S1383-5742(97)00035-5
  18. Kasai H, and Nishimura S. (1984). Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Research. 12: 2137-2145 https://doi.org/10.1093/nar/12.4.2137
  19. Kasai, H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H (1986). Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 7, 1849-1851 https://doi.org/10.1093/carcin/7.11.1849
  20. Kortenkamp A, Casadevall M, Faux SP, Jenner A, Shayer RO, Woodbridge N, O'Brien, P (1996). A role for molecular oxygen in the formation of DNA damage during the reduction of the carcinogen chromium (VI) by glutathione. Archives of Biochemistry and Biophysics. 329, 199-207 https://doi.org/10.1006/abbi.1996.0209
  21. Maeng SH, Chung HW, Yu IJ, Kim HY, Lim CH, Kim KJ, Kim SJ, Ootsuyama Y, Kasai H (2003). Changes of 8-OH-dG levels in DNA and its base excision repair activity in rat lungs after inhalation exposure to hexavalent chromium. Mutation Research. 539, 109-116 https://doi.org/10.1016/S1383-5718(03)00154-2
  22. McKelvey-Martin VJ, Green MHL, Scchmezer P, Pool-Zobel BL, De Meo M, Collins A (1993). The single cell gel electrophoresis assay (comet assay): a European review. Mutation Research. 288, 47-63 https://doi.org/10.1016/0027-5107(93)90207-V
  23. NIOSH manual of analytical methods (1999). Method No. 7300. National Institute for Occupational Health, Cincinnati
  24. Ostling O, Johanson KJ (1984). Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochemical and Biophysical Research Communications. 123, 291-298 https://doi.org/10.1016/0006-291X(84)90411-X
  25. Pant MC, Liao XY, Lu Q, Molloi S, Elmore E, Redpath JL (2003). Mechanisms of suppression of neoplastic transformation in vitro by low doses of low LET radiation. Carcinogenesis. 24, 1961-1965 https://doi.org/10.1093/carcin/bgg172
  26. Potts RJ, Bespalov IA, Wallace SS, Melamede RJ, Hart BA (2001). Inhibition of oxidative DNA repair in cadmium-adaptive alveolar epithelial cells and the potential involvement of metallothionein. Toxicology. 161, 25-38 https://doi.org/10.1016/S0300-483X(00)00419-4
  27. Samson L, Cairns J (1977). A new pathway for DNA repair in Escherichia coli. Nature. 267, 281-283 https://doi.org/10.1038/267281a0
  28. Scott BR. (2004). A biological-based model that links genomic instability, bystander effects, and adaptive response. Mutation Research. 568, 129-143 https://doi.org/10.1016/j.mrfmmm.2004.06.051
  29. Shibutani S, Takeshita M, Grollan AP (1991). Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 349, 431-434 https://doi.org/10.1038/349431a0
  30. Singh NP, McCoy MT, Tice RR, Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research. 175, 184-191 https://doi.org/10.1016/0014-4827(88)90265-0
  31. Yarborough A, Zhang Y-J, Hsu T-M and Santella RM (1996). Immunoperoxidase detection of 8-hydroxydeoxyguanosine in Aflatoxin B1-treated rat liver and human oral mucosal cells. Cancer Research. 56, 683-688
  32. Yarosh DB, Rice M, Day RS 3rd, Foote RS, Mitra S. (1984). O6- Methylguanine-DNA methyltransferase in human cells. Mutation Research. 131, 27-36 https://doi.org/10.1016/0167-8817(84)90044-0
  33. Yin B, Whyatt RM, Perera FP, Randall MC, Jedrychowski W, Cooper Y, Santella RM (1995). Determination of 8- hydroxydeoxyguanosine by immunoaffinity chromatographymonoclonal antibody-based ELISA. Free Radical Biology and Medicine. 18, 1023-1032 https://doi.org/10.1016/0891-5849(95)00003-G
  34. Yu IJ, Kim KJ, Chang HK, Song KS, Han KT, Han JH, Maeng SH, Chung YH, Park SH, Chung KH, Han JS, Chung H (2000). Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague-Dawley rats exposed to a novel welding fume generating system. Toxicology Letters. 116, 103-111 https://doi.org/10.1016/S0378-4274(00)00209-5
  35. Yu IJ, Park JD, Park ES, Song KS, Han KT, Han JH, Chung YH, Cho BS, Chung HK, Cho MH (2003). Manganese distribution in brains of Sprague-Dawley rats after 60 days of stainless steel welding-fume exposure. NeuroToxicology. 24, 777-785 https://doi.org/10.1016/S0161-813X(03)00046-9
  36. Yu IJ, Song KS, Chang HK, Han JH, Chung YH, Han KT, Chung KH, Chung HK (2003). Recovery from manual metal arcstainless steel welding-fume exposure induced lung fibrosis in Sprague-Dawley rats. Toxicology Letters. 143, 247-259 https://doi.org/10.1016/S0378-4274(03)00154-1
  37. Yu IJ, Song KS, Maeng SH, Kim SJ, Sung JH, Han JH, Chung YH, Cho MH, Chung KH, Han KT, Hyun JS, Kim KJ (2004). Inflammatory and genotoxic responses during 30-day weldingfume exposure period. Toxicology Letters. 154, 105-115 https://doi.org/10.1016/j.toxlet.2004.07.009