DOI QR코드

DOI QR Code

Inhibitory Properties of Nerve-Specific Human Glutamate Dehydrogenase Isozyme by Chloroquine

  • Choi, Myung-Min (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Kim, Eun-A (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Choi, Soo-Young (Department of Biomedical Sciences, Hallym University) ;
  • Kim, Tae-Ue (Department of Biomedical Laboratory Science, Yonsei University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University)
  • Published : 2007.11.30

Abstract

Human glutamate dehydrogenase exists in hGDH1 (housekeeping isozyme) and in hGDH2 (nerve-specific isozyme), which differ markedly in their allosteric regulation. In the nervous system, GDH is enriched in astrocytes and is important for recycling glutamate, a major excitatory neurotransmitter during neurotransmission. Chloroquine has been known to be a potent inhibitor of house-keeping GDH1 in permeabilized liver and kidneycortex of rabbit. However, the effects of chloroquine on nerve-specific GDH2 have not been reported yet. In the present study, we have investigated the effects of chloroquine on hGDH2 at various conditions and showed that chloroquine could inhibit the activity of hGDH2 at dose-dependent manner. Studies of the chloroquine inhibition on enzyme activity revealed that hGDH2 was relatively less sensitive to chloroquine inhibition than house-keeping hGDH1. Incubation of hGDH2 was uncompetitive with respect of NADH and non-competitive with respect of 2-oxoglutarate. The inhibitory effect of chloroquine on hGDH2 was abolished, although in part, by the presence of ADP and L-leucine, whereas GTP did not change the sensitivity to chloroquine inhibition. Our results show a possibility that chloroquine may be used in regulating GDH activity and subsequently glutamate concentration in the central nervous system.

Keywords

References

  1. Anagnou, N. P., Seuanez, H., Modi, W., O'Brien, S. J., Papamatheakis, J. and Moschonas, N. K. (1993) Chromosomal mapping of two members of the human glutamate dehydrogenase (GLUD) gene family to chromosomes 10q22.3-q23 and Xq22-q23. Hum. Hered. 43, 351-356. https://doi.org/10.1159/000154158
  2. Burbaeva, G. S., Boksha, I. S., Turishcheva, M. S., Vorrobyeva, E. A., Savushkina, O. K. and Tereshkina, E. B., (2003) Glutamine synthetase and glutamate dehydrogenase in the prefrontal cortex of patients with schizophrenia. Prog. Neuro-Psychoph. 27, 675-680. https://doi.org/10.1016/S0278-5846(03)00078-2
  3. Cho, S.-W., Lee, J. and Choi, S. Y. (1995) Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur. J. Biochem. 233, 340-346. https://doi.org/10.1111/j.1432-1033.1995.340_1.x
  4. Cho, S.-W., Yoon, H.-Y., Ahn, J.-Y., Lee, E.-Y. and Lee, J. (2001) Cassette mutagenesis of lysine 130 of human glutamate dehydrogenase: An essential residue in catalyis. Eur. J. Biochem. 268, 3205-3213. https://doi.org/10.1046/j.1432-1327.2001.02209.x
  5. Collier, D. A. and Li, T., (2003) The genetics of schizophrenia: glutamate not dopamine? Eur. J. Pharmacol. 480, 177-184. https://doi.org/10.1016/j.ejphar.2003.08.105
  6. Desta, M., Tadesse, A., Gebre, N., Barci., B. M., Torrey, E. F. and Bnable, M. B. (2002) Controlled trial of hydroxychloroquine in schizophrenia. J. Clin. Psychopharm. 22, 507-510. https://doi.org/10.1097/00004714-200210000-00011
  7. Dracheva. S., Marras, S. A. E., Elhakem, S. L., Kramer, F. R., Davis, K. L. and Haroutunian, V. (2001) N-Methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am. J. Psychiat. 158, 1400-1410. https://doi.org/10.1176/appi.ajp.158.9.1400
  8. Fisher, H.F . (1985) L-Glutamate dehydrogenase from bovine liver. Methods Enzymol. 113, 16-27. https://doi.org/10.1016/S0076-6879(85)13006-5
  9. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  10. Hanauer, A., Mattei, M. G. and Mandel, J. L. (1987) Presence of a TaqI polymorphism in the human glutamate dehydrogenase (GLUD) gene on chromosome 10. Nucleic Acids Res. 15, 6308. https://doi.org/10.1093/nar/15.15.6308
  11. Hussain, M. H., Zannis, V. I. and Plaitakis, A. (1989) Characterization of glutamate dehydrogenase isoproteins purified from the cerebellum of normal subjects and patients with degenerative neurological disorders and from human neoplastic cell lines. J. Biol. Chem. 264, 20730-20735.
  12. Jarzyna, R., Lenarcik, E. and Bryla, J. (1997) Chloroquine is a potent inhibitor of glutamate dehydrogenase in liver and kidney-cortex of rabbit. Pharmacol. Res. 35, 79-84. https://doi.org/10.1006/phrs.1996.0108
  13. Kim, S. Y., An, J. J., Kim, D. W., Choi, S. H., Lee, S. H., Hwang, S.- I., Kwon, O.-S., Kang, T.-C., Won, M. H., Cho, S.-W., Park, J., Eum, W. S., Lee, K. S. and Soo Young Choi (2006) Tat-mediated protein transduction of human brain pyridoxine-5-P oxidase into PC12 cells. J. Biochem. Mol. Biol. 39, 76-83. https://doi.org/10.5483/BMBRep.2006.39.1.076
  14. Mavrothalassitis, G., Tzimagiorgis, G., Mitsialis, A., Zannis, V. I., Plaitakis, A., Papamatheakis, J. and Moschonas, N. K. (1988) Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: evidence for a small gene family. Proc. Natl. Acad. Sci. USA 85, 3494-3498. https://doi.org/10.1073/pnas.85.10.3494
  15. Michaelidis, T. M., Tzimagiorgis, G., Moschonas, N. K. and Papamatheakis, J. (1993) The Human Glutamate Dehydrogenase Gene Family: Gene Organization and Structural Characterization. Genomics 16, 150-160. https://doi.org/10.1006/geno.1993.1152
  16. Nawa, H., Takahashi, M. and Patterson, P. H. (2000) Cytokine and growth factor involvement in schizophrenia: support for the developmental model. Mol. Psychiatry 5, 594-603. https://doi.org/10.1038/sj.mp.4000730
  17. O'Shaughnessy, T. J., Zim, B., Ma, W., Shaffer, K. M., Stenger, D. A., Zamani, K., Gross, G. W. and Pancrazio, J. J., (2003) Acute neuropaharmacologic action of chloroquine on cortical neurons in vitro. Brain Res. 959, 280-286. https://doi.org/10.1016/S0006-8993(02)03763-0
  18. Plaitakis, A., Spanaki, C., Mastorodemos, V. and Zaganas, I. (2003) Study of structure-function relationships in human glutamate dehydrogenases reveals novel molecular mechanisms for the regulation of the nerve tissue-specific (GLUD2) isoenzyme. Neurochem. Int. 43, 401-410. https://doi.org/10.1016/S0197-0186(03)00028-7
  19. Plaitakis, A., Metaxari. M. and Shashidharan, P., (2000) Nerve tissue-specific (GLUD2) and housekeeping (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms: Implications for biological function. J. Neurochem. 75, 1862-1869. https://doi.org/10.1046/j.1471-4159.2000.0751862.x
  20. Reichenberg, A., Yirmiya, R. and Schuld, A. (2001) Cytokineassociated emotional and cognitive disturbances in humans. Arch Gen Psychiatry, 58 445-452. https://doi.org/10.1001/archpsyc.58.5.445
  21. Shacka, J. J., Klocke, B. J., Shibata, M., Uchiyama, Y., Datta, G., Schmidt, R. E. and Roth, K. A. (2006) Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Mol. Pharmacol. 69, 1125-1136. https://doi.org/10.1124/mol.105.018408
  22. Shashidharan, P., Michaelidis, T. M., Robakis, N. K., Kresovali, A., Papamatheakis, J. and Pliatakis, A. (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J. Biol. Chem. 269, 16971-16976.
  23. Shashidharan, P., Clarke, D. D., Ahmed, N., Moschonas, N. and Plaitakis, A. (1997) Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. J. Neurochem. 68, 1804-1811. https://doi.org/10.1046/j.1471-4159.1997.68051804.x
  24. Smith, R. E., Haroutunian, V., Davis, K. L. and Meador-Woodruff, J. H. (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am. J. Psychiatry. 158, 1393-1399. https://doi.org/10.1176/appi.ajp.158.9.1393
  25. Sperber, K., Quraishi, H. and Kalb T. H. (1993) Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha and IL-6 in human monocytes and T cells. J. Rheumatol. 20, 803-808.
  26. Studier, F. W. and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
  27. Tamminga, C. A. and Frost, D. O., (2001) Changing concepts in the neurochemistry of schizophrenia. Am. J. Psyciat. 158, 1365-1366. https://doi.org/10.1176/appi.ajp.158.9.1365
  28. Teller, J. K., Smith, R. J., McPherson, M. J., Engel, P. C. and Guest, J. R. (1992) Correlation of intron-exon organization with the three-dimensional structure in glutamate dehydrogenase. Eur. J. Biochem. 206, 151-159. https://doi.org/10.1111/j.1432-1033.1992.tb16912.x
  29. Tett, S., Cutler, D., and Day, R. (1990) Antimalarials in rheumatic diseases. Bailieres Clin. Rheumatol. 4, 467-489. https://doi.org/10.1016/S0950-3579(05)80004-4
  30. Tsai, G., Passani, L. A., Slusher, B. S., Baer, L., Kleinman, J. E. and Coyle, J. T. (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brain. Arch. Gen. Psychiatry 52, 829-836. https://doi.org/10.1001/archpsyc.1995.03950220039008
  31. Van den Boren, B. E., Dijkmans, B. A. and de Rooij, H. H. (1997) Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J. Rheumatol, 24, 55-60.
  32. Yang, S.-J., Huh, J.-W., Kim, M. J., Lee, W.-J., Kim, T. U., Choi, S. Y. and Cho, S.-W. (2003) Regulatory effects of 5'-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85, 581-586. https://doi.org/10.1016/S0300-9084(03)00092-0
  33. Yang, S.-J., Huh, J.-W., Hong, H.-N., Kim, T. U. and Cho, S.-W. (2004) Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes. FEBS Lett. 562, 59-64. https://doi.org/10.1016/S0014-5793(04)00183-8
  34. Yuyama, K., Yamamoto, N. and Yanagisawa, K. (2006) Chloroquineinduced endocytic pathway abnormalities: Cellular model of GM1 ganglioside-induced Ab fibrillogenesis in Alzheimer's disease. FEBS Lett. 580, 6972-6976. https://doi.org/10.1016/j.febslet.2006.11.072
  35. Zaganas, I. and Plaitakis, A. (2002) Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme. J. Biol. Chem. 277, 26422-26428. https://doi.org/10.1074/jbc.M200022200

Cited by

  1. Inhibitory Effects of Human Glutamate Dehydrogenase Isozymes by Antipsychotic Drugs for Schizophrenia vol.17, pp.1, 2016, https://doi.org/10.5762/KAIS.2016.17.1.152
  2. Re-purposing Chloroquine for Glioblastoma: Potential Merits and Confounding Variables vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00335