Differential Expression of Three Catalase Genes in the Small Radish (Rhaphanus sativus L. var. sativus)

  • Kwon, Soon Il (Department of Biological Sciences, Seoul National University) ;
  • Lee, Hyoungseok (Department of Biological Sciences, Seoul National University) ;
  • An, Chung Sun (Department of Biological Sciences, Seoul National University)
  • Received : 2006.12.08
  • Accepted : 2007.05.07
  • Published : 2007.08.31

Abstract

Three catalase cDNA clones were isolated from the small radish (Raphanus sativus L.). Their nucleotide and deduced amino acid sequences showed the greatest homology to those of Arabidopsis. Genomic Southern blot analysis, using RsCat1 cDNA as a probe, showed that catalases are encoded by small multigene family in the small radish. Nondenaturing polyacrylamide gels revealed the presence of several catalase isozymes, the levels of which varied among the organs examined. The isozyme activities were assigned the individual catalase genes by Northern analysis using total RNA from different organs. The three catalase genes were differentially expressed in response to treatments such as white light, xenobiotics, osmoticum, and UV. Their expression in seedlings was controlled by the circadian clock under a light/dark cycle and/or in constant light. Interestingly, RsCat1 transcripts peaked in the morning, while those of RsCat2 and RsCat3 peaked in the early evening. Our results suggest that the RsCat enzymes are involved in defense against the oxidative stress induced by environmental changes.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Acevedo, A. and Scandalios J. G. (1991) Catalase and superoxide dismutase gene expression and distribution during stem development in maize. Dev. Genet. 12, 423-430 https://doi.org/10.1002/dvg.1020120607
  2. Acevedo, A., Williamson, J. D., and Scandalios, J. G. (1991) Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation of Cat3 is superimposed on its quasi-constitutive expression in maize leaves. Genetics 127, 601-607
  3. Ahmad, M. and Cashmore, A. R. (1997) The blue-light receptor cryptochrome 1 shows functional dependence on the phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 11, 421-427 https://doi.org/10.1046/j.1365-313X.1997.11030421.x
  4. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., et al. (1987) Current Protocols in Molecular Biology, pp. 4.5.1-4.5.3, John Wiley & Sons, New York
  5. Bellaire, B. A., Carmody, J., Braud, J., Gossett, D. R., Banks, S. W., et al. (2000) Involvement of abscisic acid-dependent and -independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic. Res. 33, 531-545 https://doi.org/10.1080/10715760000301071
  6. Bethke, P. C. and Jones, R. L. (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J. 25, 19-29 https://doi.org/10.1046/j.1365-313x.2001.00930.x
  7. Boldt, R. and Scandalios, J. G. (1997) Influence of UV-Light on the Expression of the Cat2 and Cat3 catalase genes in Maize. Free Radic. Biol. Med. 23, 505-514 https://doi.org/10.1016/S0891-5849(97)00111-1
  8. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Carpenter, C. D., Kreps, J. A., and Simon, A. E. (1994) Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104, 1015-1025 https://doi.org/10.1104/pp.104.3.1015
  10. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159
  11. Dat, J. F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., et al. (2003) Changes in hydrogenperoxide homeostasis trigger an active cell death process in tobacco. Plant J. 33, 621-632 https://doi.org/10.1046/j.1365-313X.2003.01655.x
  12. Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell 96, 271-290 https://doi.org/10.1016/S0092-8674(00)80566-8
  13. Esaka, M., Yamada, N., Kitabayashi, M., Setoguchi, Y., Tsugeki, R., et al. (1997) cDNA cloning and differential gene expression of three catalases in pumkin. Plant Mol. Biol. 33, 141-155 https://doi.org/10.1023/A:1005742916292
  14. Fita, I. and Rossman, M. G. (1985) The active center of catalase. J. Mol. Biol. 185, 21-37
  15. Frugoli, J. A., Zhong, H. H., Nuccio, M. L., McCourt, P., McPeek, M. A., et al. (1996) Catalase is encoded by a multi-gene family in Arabidopsis thaliana (L) Heynh. Plant Physiol. 112, 327-336 https://doi.org/10.1104/pp.112.1.327
  16. Gould, S. J., Keller, G. A., Hosken, N., Wilkinson, J., and Subramani, S. (1989) A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657-1664 https://doi.org/10.1083/jcb.108.5.1657
  17. Grant, J. J. and Loake, G. J. (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124, 21-29 https://doi.org/10.1104/pp.124.1.21
  18. Gregory, E. M. and Fridovich, I. (1974) Visualization of catalase on acryamide gels. Anal. Biochem. 58, 57-62 https://doi.org/10.1016/0003-2697(74)90440-0
  19. Guan, L. and Scandalios, J. G. (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc. Natl. Acad. Sci. USA 92, 5930-5934
  20. Guan, L. and Scandalios, J. G. (1996) Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J. Mol. Evol. 42, 570-579 https://doi.org/10.1007/BF02352287
  21. Guan, L., Zho, J., and Scandalios, J. G. (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J. 22, 87-95 https://doi.org/10.1046/j.1365-313x.2000.00723.x
  22. Iwammoto, M., Higo, H., and Higo, K. (2000) Differential diurnal expression of rice catalase genes: the 5-flanking region of catA is not sufficient for circadian control. Plant Sci. 151, 39-46 https://doi.org/10.1016/S0168-9452(99)00194-6
  23. Kamigaki, A., Mano, S., Terauchi, K., Nishi, Y., Tachibe-Kinoshita, Y., et al. (2003) Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. Plant J. 33, 161-175 https://doi.org/10.1046/j.0960-7412.2003.001605.x
  24. Kwon, S. I. and An, C. S. (2001) Molecular cloning, characterization and expression analysis of a catalase cDNA from hot pepper (Capsicum annuum L.). Plant Sci. 160, 961-969 https://doi.org/10.1016/S0168-9452(01)00332-6
  25. Kwon, S. I. and An, C. S. (2003) Cloning and expression of mitochondrial MnSOD from the small radish (Raphanus sativus L.). Mol. Cells 16, 194-200
  26. Lee, S. H. and An, C. S. (2005) Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Mol. Cells 20, 247-255
  27. McClung, C. R. (1997) Regulation of catalase in Arabidopsis. Free Rad. Biol. Med. 23, 489-496 https://doi.org/10.1016/S0891-5849(97)00109-3
  28. McClung, C. R. and Kay, S. A. (1994) Circadian rhythms in Arabidopsis thaliana; in Arabidopsis, Meyerowitz, E. M. and Somerville, C. R. (eds.), pp 615-637, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  29. Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  30. Mori, H., Hogo, K., Higo, H., Minobe, Y., Matsui, H., et al. (1992) Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds. Plant Mol. Biol. 18, 973-976 https://doi.org/10.1007/BF00019211
  31. Mylona, P. V., Polidoros, A. N., and Scandalios, J. G. (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic. Biol. Med. 25, 576-585 https://doi.org/10.1016/S0891-5849(98)00090-2
  32. Orozco-Cardenas, M. and Ryan, C. A. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96, 6553-6557
  33. Redinbaugh, M. G., Wadsworth, G. J., and Scandalios, J. G. (1988) Characterization of catalase transcripts and their differential expression in maize. Biochim. Biophys. Acta. 951, 104-116 https://doi.org/10.1016/0167-4781(88)90030-9
  34. Redinbaugh, M. G., Sabre, M., and Scandalios, J. G. (1990a) Expression of the maize Cat3 catalase gene in under the influenceof a circadian rhythm. Proc. Natl. Acad. Sci. USA 87, 6853-6857
  35. Redinbaugh, M. G., Sabre, M., and Scandalios, J. G. (1990b) The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol. 92, 375-380 https://doi.org/10.1104/pp.92.2.375
  36. Renger, G., Volker, M., Eckert, H. J., Fromme, R., Hohm-Veit, S., et al. (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem. Photobiol. 49, 97-105 https://doi.org/10.1111/j.1751-1097.1989.tb04083.x
  37. Scandalios, J. G. (1997) Catalase in plants: gene structure, properties, regulation, and expression. Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Scandalios, J. G. (ed.) pp. 343-406, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  38. Scandalios, J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38, 995-1014 https://doi.org/10.1590/S0100-879X2005000700003
  39. Somers, D. E. (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol. 121, 9-19 https://doi.org/10.1104/pp.121.1.9
  40. Strid, A., Chow, W. S., and Anderson, J. M. (1990) Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochim. Biophys. Acta 1020, 260-268 https://doi.org/10.1016/0005-2728(90)90156-X
  41. Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., et al. (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45-58 https://doi.org/10.1111/j.1365-313X.2004.02105.x
  42. Wadsworth, G. J. and Scandalios, J. G. (1989) Differential expression of the maize catalase genes during kernel development: The role of steady-state mRNA levels. Dev. Genet. 10, 304-310 https://doi.org/10.1002/dvg.1020100405
  43. Williamson, J. D. and Scandalios, J. G. (1992) Differential response of maize catalases and superoxide dismutase to the photoactivated fungal toxin cercosporin. Plant J. 2, 351-358
  44. Willekens, H., Langebartles, C., Tire, C., Van Montagu, M., Inze, D., et al. (1994a) Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc. Natl. Acad. Sci. USA 91, 10450-10454
  45. Willekens, H., Van Camp, W., Van Montagu, M., Inze, D., Sandermann, H., et al. (1994b) Ozone, sulfur dioxide, and Ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol. 106, 1007-1014 https://doi.org/10.1104/pp.106.3.1007
  46. Willekens, H., Villarroel, R., Van Montagu, M., Inze, D., and Van Camp, W. (1994c) Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Lett. 352, 79-83 https://doi.org/10.1016/0014-5793(94)00923-6
  47. Yi, S., Yu, S., and Choi, D. I. (2003) Involvement of hydrogen peroxide in repression of catalase in TMV-infected resistant tobacco. Mol. Cells 15, 364-369
  48. Zhong, H. H. and McClung, C. R. (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol. Gen. Genet. 251, 196-203
  49. Zhong, H. H., Young, J. C., Pease, E. A., Hangarter, R. P., and McClung, C. R. (1994) Interactions between light and the circadian clock in the regulation of CAT2 expreassion in Arabidopsis. Plant Physiol. 104, 889-898 https://doi.org/10.1104/pp.104.3.889