참고문헌
- Bachmann, M., Huber, J. L., Athwal, G. S., Wu, K., Ferl, R. J. and Huber, S. C. (1996) 14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Lett. 398, 26-30 https://doi.org/10.1016/S0014-5793(96)01188-X
-
Booij, P. P., Roberts, M. R., Vogelzang, S. A., Kraayenhof, R. and De Boer, A. H. (1999) 14-3-3 proteins double the number of outward-rectifying
$K^{+}$ channels available for activation in tomato cells. Plant J. 20, 673-683 https://doi.org/10.1046/j.1365-313X.1999.00643.x - Cooper, B., Clarke, J. D., Budworth, P., Kreps, J., Hutchison, D., Park, S., Guimil, S., Dunn, M., Luginbuhl, P., Ellero, C., Goff, S. A. and Glazebrook, J. (2003a) A network of rice genes associated with stress response and seed development. Proc. Natl. Acad. Sci. USA 100, 4945-4950 https://doi.org/10.1073/pnas.0737574100
- Cooper, B., Hutchison, D., Park, S., Guimil, S., Luginbuhl, P., Ellero, C., Goff, S. A. and Glazebrook, J. (2003b) Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Mol. Biol. 53, 273-279 https://doi.org/10.1023/B:PLAN.0000007001.30865.0f
- Dougherty, M. K. and Morrison, D. K. (2004) Unlocking the code of 14-3-3. J. Cell Sci. 117, 1875-1884 https://doi.org/10.1242/jcs.01171
- Fu, H., Subramanian, R. R. and Masters, S. C. (2000) 14-3-3 proteins:structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617-647 https://doi.org/10.1146/annurev.pharmtox.40.1.617
- Gietz, R. D., Schiestl, R. H., Willems, A. R. and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360 https://doi.org/10.1002/yea.320110408
- Holtman, W. L., Roberts, M. R. and Wang, M. (2000) 14-3-3 proteins and a 13-lipoxygenase form associations in a phosphorylationdependent manner. Biochem. Soc. Trans 28, 834-836 https://doi.org/10.1042/BST0280834
- Igarashi, D., Ishida, S., Fukazawa, J. and Takahashi, Y. (2001) 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell 13, 2483-2497 https://doi.org/10.1105/tpc.13.11.2483
- Jahn, T., Fuglsang, A. T., Olsson, A., Bruntrup, I. M., Collinge, D. B., Volkmann, D., Sommarin, M., Palmgren, M. G. and Larsson, C. (1997) The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)- ATPase. Plant Cell 9, 1805-1814 https://doi.org/10.1105/tpc.9.10.1805
- Kidou, S., Umeda, M., Kato, A. and Uchimiya, H. (1993) Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Mol. Biol. 21, 191-194 https://doi.org/10.1007/BF00039631
- Lapointe, G., Luckevich, M. D., Cloutier, M. and Seguin, A. (2001) 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. J. Exp. Bot. 52, 1331-1338 https://doi.org/10.1093/jexbot/52.359.1331
- Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H. and Liddington, R. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376, 191-194 https://doi.org/10.1038/376191a0
- Lu, G., Paul, A. L., McCarty, D. R. and Ferl, R. J. (1996) Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell 8, 847-857 https://doi.org/10.1105/tpc.8.5.847
-
Michelet, B. and Boutry, M. (1995) The plasma membrane
$H^{+}$ - ATPase (A highly regulated enzyme with multiple physiological functions). Plant Physiol. 108, 1-6 https://doi.org/10.1104/pp.108.1.1 - Muslin, A. J. and Xing, H. (2000) 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 12, 703-709 https://doi.org/10.1016/S0898-6568(00)00131-5
- Qi, W., Liu, X., Qiao, D. and Martinez, J. D. (2005) Isoformspecific expression of 14-3-3 proteins in human lung cancer tissues. Int. J. Cancer 113, 359-363 https://doi.org/10.1002/ijc.20492
- Rosenquist, M., Alsterfjord, M., Larsson, C. and Sommarin, M. (2001) Data mining the Arabidopsis genome reveals fifteen 14- 3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 127, 142-149 https://doi.org/10.1104/pp.127.1.142
- Rosenquist, M., Sehnke, P., Ferl, R. J., Sommarin, M. and Larsson, C. (2000) Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J. Mol. Evol. 51, 446-458 https://doi.org/10.1007/s002390010107
- Schultz, T. F., Medina, J., Hill, A. and Quatrano, R. S. (1998) 14-3-3 proteins are part of an abscisic acid-VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10, 837-847 https://doi.org/10.1105/tpc.10.5.837
- Sehnke, P. C., Rosenquist, M., Alsterfjord, M., DeLille, J., Sommarin, M., Larsson, C. and Ferl, R. J. (2002) Evolution and isoform specificity of plant 14-3-3 proteins. Plant Mol. Biol. 50, 1011-1018 https://doi.org/10.1023/A:1021289127519
- Shah, J. (2003) The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6, 365-371 https://doi.org/10.1016/S1369-5266(03)00058-X
- Toroser, D., Athwal, G. S. and Huber, S. C. (1998) Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS Lett 435, 110-114 https://doi.org/10.1016/S0014-5793(98)01048-5
- van Heusden, G. P., Griffiths, D. J., Ford, J. C., Chin, A. W. T. F., Schrader, P. A., Carr, A. M. and Steensma, H. Y. (1995) The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 229, 45-53 https://doi.org/10.1111/j.1432-1033.1995.0045l.x
- van Heusden, G. P., van der Zanden, A. L., Ferl, R. J. and Steensma, H. Y. (1996) Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 bmh2 double disruption. FEBS Lett. 391, 252-256 https://doi.org/10.1016/0014-5793(96)00746-6
- Wang, W. and Shakes, D. C. (1996) Molecular evolution of the 14-3-3 protein family. J. Mol. Evol. 43, 384-398 https://doi.org/10.1007/BF02339012
- Wu, K., Rooney, M. F. and Ferl, R. J. (1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol. 114, 1421-1431 https://doi.org/10.1104/pp.114.4.1421
- Zhang, H., Wang, J., Nickel, U., Allen, R. D. and Goodman, H. M. (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34, 967-971 https://doi.org/10.1023/A:1005814109732
피인용 문헌
- Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa vol.7, 2016, https://doi.org/10.3389/fpls.2016.00012
- 14-3-3 proteins in plant physiology vol.22, pp.7, 2011, https://doi.org/10.1016/j.semcdb.2011.08.006
- Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana vol.7, 2016, https://doi.org/10.3389/fpls.2016.01442
- Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.) vol.4, pp.3, 2016, https://doi.org/10.1016/j.cj.2016.03.002
- Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis vol.39, pp.4, 2012, https://doi.org/10.1007/s11033-011-1239-7
- Identification and characterization of the 14-3-3 gene family in Hevea brasiliensis vol.80, 2014, https://doi.org/10.1016/j.plaphy.2014.03.034
- Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian) vol.31, pp.2, 2012, https://doi.org/10.1007/s00299-011-1172-1
- Molecular Analysis and Expression Patterns of Four 14-3-3 Genes from Brassica napus L. vol.9, pp.7, 2010, https://doi.org/10.1016/S1671-2927(09)60175-9
- Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.) vol.11, pp.4, 2011, https://doi.org/10.1007/s10142-011-0242-3
- Plant receptor kinases bind and phosphorylate 14-3-3 proteins vol.38, pp.11, 2016, https://doi.org/10.1007/s13258-016-0468-5
- Interaction between ACC synthase 1 and 14-3-3 proteins in rice: a new insight vol.72, pp.9, 2007, https://doi.org/10.1134/S000629790709012X
- 14-3-3 Proteins in Plant-Pathogen Interactions vol.28, pp.5, 2015, https://doi.org/10.1094/MPMI-10-14-0322-CR
- Identification and Expression Analysis of the 14-3-3 Gene Family in the Mulberry Tree vol.33, pp.6, 2015, https://doi.org/10.1007/s11105-015-0877-7
- Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development vol.6, 2017, https://doi.org/10.7554/eLife.24336
- OsGF14bPositively Regulates Panicle Blast Resistance but Negatively Regulates Leaf Blast Resistance in Rice vol.29, pp.1, 2016, https://doi.org/10.1094/MPMI-03-15-0047-R
- 14-3-3 and FHA Domains Mediate Phosphoprotein Interactions vol.60, pp.1, 2009, https://doi.org/10.1146/annurev.arplant.59.032607.092844
- Proteomic analysis in the induction of nodular cluster cultures in the bromeliad Vriesea reitzii Leme and Costa vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2140-8
- 14-3-3 Proteins in Guard Cell Signaling vol.6, 2016, https://doi.org/10.3389/fpls.2015.01210
- 14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean vol.71, pp.2, 2012, https://doi.org/10.1111/j.1365-313X.2012.04986.x
- The Arabidopsis F-box protein AtFBS1 interacts with 14-3-3 proteins vol.195, 2012, https://doi.org/10.1016/j.plantsci.2012.06.009
- ABF transcription factors ofThellungiella salsuginea vol.8, pp.1, 2013, https://doi.org/10.4161/psb.22672
- Soybean 14-3-3 gene family: identification and molecular characterization vol.233, pp.3, 2011, https://doi.org/10.1007/s00425-010-1315-6
- Genome-wide identification and characterization of the 14–3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4955-8
- Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava vol.9, pp.2, 2018, https://doi.org/10.3390/genes9020110
- Overexpression of PvGF14c from Phyllostachys violascens Delays Flowering Time in Transgenic Arabidopsis vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00105
- Signaling Overview of Plant Somatic Embryogenesis vol.10, pp.1664-462X, 2019, https://doi.org/10.3389/fpls.2019.00077