DOI QR코드

DOI QR Code

Application of Recent DNA/RNA-based Techniques in Rumen Ecology

  • McSweeney, C.S. (CSIRO Livestock Industries, Queensland Bioscience Precinct) ;
  • Denman, S.E. (CSIRO Livestock Industries, Queensland Bioscience Precinct) ;
  • Wright, A.-D.G. (CSIRO Livestock Industries, Queensland Bioscience Precinct) ;
  • Yu, Z. (Department of Animal Sciences, The Ohio State University)
  • Published : 2007.02.01

Abstract

Conventional culture-based methods of enumerating rumen microorganisms (bacteria, archaea, protozoa, and fungi) are being rapidly replaced by nucleic acid-based techniques which can be used to characterise complex microbial communities without incubation. The foundation of these techniques is 16S/18S rDNA sequence analysis which has provided a phylogenetically based classification scheme for enumeration and identification of microbial community members. While these analyses are very informative for determining the composition of the microbial community and monitoring changes in population size, they can only infer function based on these observations. The next step in functional analysis of the ecosystem is to measure how specific and, or, predominant members of the ecosystem are operating and interacting with other groups. It is also apparent that techniques which optimise the analysis of complex microbial communities rather than the detection of single organisms will need to address the issues of high throughput analysis using many primers/probes in a single sample. Nearly all the molecular ecological techniques are dependant upon the efficient extraction of high quality DNA/RNA representing the diversity of ruminal microbial communities. Recent reviews and technical manuals written on the subject of molecular microbial ecology of animals provide a broad perspective of the variety of techniques available and their potential application in the field of animal science which is beyond the scope of this treatise. This paper will focus on nucleic acid based molecular methods which have recently been developed for studying major functional groups (cellulolytic bacteria, protozoa, fungi and methanogens) of microorganisms that are important in nutritional studies, as well as, novel methods for studying microbial diversity and function from a genomics perspective.

Keywords

References

  1. Bera-Maillet, C., A. Kwasiborski, P. Mosoni and E. Forano. 2004. Quantification of Fibrobacter succinogenes cellulase and xylanase gene expression in the rumen of a gnotobiotic lamb by real-time RT-PCR. INRA-RRI 2004 Gut Microbiology 4th Joint Symposium, Clermont-Ferrand, France. Rep. Nutr. Develop. 44(Suppl. 1):S57
  2. Bonnet, R., A. Suau, J. Dore, G. R. Gibson and M. D. Collins. 2002. Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int. J. Syst. Evol. Microbiol. 52:757-763. https://doi.org/10.1099/ijs.0.01755-0
  3. Bowman, B. H., J. W. Taylor, A. G. Brownlee, J. Lee, S. D. Lu, and T. J. White. 1992. Molecular evolution of the fungi: relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol. Biol. Evol. 9:285-296.
  4. Briesacher, S. L., T. May, K. N. Grigsby, M. S. Kerley, R. V. Anthony and J. A. Paterson. 1992. Use of DNA probes to monitor nutritional effects on ruminal prokaryotes and Fibrobacter succinogenes S85. J. Anim. Sci. 70:289-295. https://doi.org/10.2527/1992.701289x
  5. Brookman, J. L., G. Mennim, A. P. Trinci, M. K. Theodorou and D. S. Tuckwell. 2000. Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiol. 146:393-403. https://doi.org/10.1099/00221287-146-2-393
  6. Dehority, B. A. 2003. Rumen Microbiology. Nottingham, UK., Nottingham University Press.
  7. Denman, S. E., M. J. Nicholson, M. K. Theodorou, J. L. Brookman and C. S. McSweeney. 2003. Tracking cellulolytic anaerobic rumen fungal populations along the digestive tract of cattle. In: MIE Bioforum 2003 'Biotechnology of Lignocellulose Degradation and Biomass Utilisation' Ise- Shima, Japan.
  8. Denman, S. E. and C. S. McSweeney. 2005. PCR-based methods for analysis of populations and gene expression. 3.2 quantitative (Real time) PCR. In 'Methods in Gut Microbial Ecology for Ruminants'. (Ed. H. Makkar and C. S. McSweeney), Springer, The Netherlands.
  9. Denman, S. E. and C. S. McSweeney. 2006. The use of quantitative PCR for monitoring diurnal fluxes of anaerobic fungal and bacterial populations within the rumen. FEMS Microb. Ecol. (in press).
  10. Denman, S. E., N. Tomkins and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In '2nd International Symposium on Greenhouse Gases and Animal Agriculture' (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). ETH Zurich, Switzerland, p. 112.
  11. Dennis, P., E. A. Edwards, S. N. Liss and R. Fulthorpe. 2003. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbiol. 69:769- 778. https://doi.org/10.1128/AEM.69.2.769-778.2003
  12. Dore, J., A. G. Brownlee, L. Millet, I. Virlogeux, M. Saigne, G. Fonty and P. Gouet. 1993. Ribosomal DNA-targeted hybridisation probes for the detection, identification and quantitation of anaerobic rumen fungi. Proc. Nutr. Soc. 52:176A.
  13. Faichney, G. J., C. Poncet, B. Lassalas, J. P. Jouany, L. Millet, J. Dore and A. G. Brownlee. 1997. Effect of concentrates in a hay diet on the contribution of anaerobic fungi, protozoa, and bacteria to nitrogen in rumen and duodenal digesta in sheep. Anim. Feed Sci. Technol. 64:193-213. https://doi.org/10.1016/S0377-8401(96)01059-0
  14. Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157-161. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  15. Firkins, J. L. and Z. Yu. 2006. Characterisation and quantification of the microbial populations of the rumen. Ruminant physiology: Digestion, metabolism and impact of nutrition on gene expression, immunology and stress (Ed. K. Sejrsen, T. Hvelplund and M. O. Nielsen). pp. 19-54. Wageningen Academic Publisher, The Netherlands.
  16. Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65:4630-4636.
  17. Forster, R., J. Gong and R. J. Teather. 1997. Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen. Appl. Environ. Microbiol. 63:1256-1260.
  18. Freeman, W. M., S. J. Walker and K. E. Vrana. 1999. Quantitative RT-PCR: pitfalls and potential. Biotech. 26:112-125.
  19. Galand, P. E., S. Saarnio, H. Fritze and K. Yrjala. 2002. Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol. Ecol. 42:441-449. https://doi.org/10.1111/j.1574-6941.2002.tb01033.x
  20. Gray, N. D. and I. M. Head. 2001. Linking genetic identity and function in communities of uncultured bacteria. Environ. Microbiol. 3:481-492. https://doi.org/10.1046/j.1462-2920.2001.00214.x
  21. Hallam, S. J., P. R. Girguis, C. M. Preston, P. M. Richardson and E. F. DeLong. 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69:5483-5491. https://doi.org/10.1128/AEM.69.9.5483-5491.2003
  22. Hespell, R. B., D. E. Akin and B. A. Dehority. 1997. Bacteria, fungi, and protozoa of the rumen. In: Gastrointestinal Microbiology, vol. 2, (Ed. R. I. Mackie, B. A. White and R. E. Isaacson). pp. 59-141. Chapman and Hall, New York.
  23. Hiraishi, A., Y. Kamagata and K. Nakamura. 1995. Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens. J. Ferment. Bioeng. 79:523-529. https://doi.org/10.1016/0922-338X(95)94742-A
  24. Irbis, C. and K. Ushida. 2004. Detection of methanogens and proteobacteria from a single cell of rumen ci,liate protozoa. J. Gen. Appl. Microbiol. 50:203-212. https://doi.org/10.2323/jgam.50.203
  25. Jouany, J. P. 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. J. Nutr. 126:1335S-1346S. https://doi.org/10.1093/jn/126.suppl_4.1335S
  26. Karnati, S. K., Z. Yu, J. T. Sylvester, B. A. Dehority, M. Morrison and J. L. Firkins. 2003. Specific PCR amplification of protozoal 18S rDNA sequences from DNA extracted from ruminal samples of cows. J. Anim. Sci. 81:812-815. https://doi.org/10.2527/2003.813812x
  27. Kisidayova, S., Z. Varadyova, I. Zelenak and P. Siroka. 2000. Methanogenesis in rumen ciliate cultures of Entodinium caudatum and Epidinium ecaudatum after long-term cultivation in a chemically defined medium. Folia Microbiol. (Praha) 45:269-274. https://doi.org/10.1007/BF02908958
  28. Klieve, A. V., D. Hennessy, D. Ouwerkerk, R. J. Forster, R. I. Mackie and G. T. Attwood. 2003. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J. Appl. Microbiol. 95:621-630. https://doi.org/10.1046/j.1365-2672.2003.02024.x
  29. Kocherginskaya, S. A., R. I. Aminov and B. A. White. 2001. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 7:119-134. https://doi.org/10.1006/anae.2001.0378
  30. Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361- 366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  31. Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003a. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy. Sci. 86:1429-1435. https://doi.org/10.3168/jds.S0022-0302(03)73726-6
  32. Koike, S., S. Yoshitanib, Y. Kobayashi and K. Tanaka. 2003b. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229:23-30. https://doi.org/10.1016/S0378-1097(03)00760-2
  33. Krause, D. O., B. P. Dalrymple, W. J. Smith, R. I. Mackie and C. S. McSweeney. 1999a. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Microbiol. 145:1797-1807. https://doi.org/10.1099/13500872-145-7-1797
  34. Krause, D. O., W. J. M. Smith, F. M. E. Ryan, R. I. Mackie and C. S. McSweeney. 1999b. Use of 16S-rRNA based techniques to investigate the ecological succession of microbial populations in the immature lamb rumen: Tracking of a specific strain of inoculated Ruminococcus and interactions with other microbial populations in vivo. Microb. Ecol. 38:365-376. https://doi.org/10.1007/s002489901006
  35. Krause, D. O., W. J. Smith and C. S. McSweeney. 2001. Extraction of microbial DNA from rumen contents containing plant tannins. Bio. Techn. 31:294-298.
  36. Krause, D. O., W. J. M. Smith, J. D. Brooker and C. S. McSweeney. 2005. Tolerance mechanisms of streptococci to hydrolysable and condensed tannins. Anim. Feed Sci. Technol. 121:59-75. https://doi.org/10.1016/j.anifeedsci.2005.02.008
  37. Larue, R., Z. Yu, V. A. Parisi, A. R. Egan and M. Morrison. 2004. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ. Microbiol. 7:530-543 https://doi.org/10.1111/j.1462-2920.2005.00721.x
  38. Lee, S. S., J. K. Ha and K.-J. Cheng. 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their Interactions. Appl. Environ. Microbiol. 66:3807-3813. https://doi.org/10.1128/AEM.66.9.3807-3813.2000
  39. Lueders, T., B. Pommerenke and M. W. Friedrich. 2004. Stableisotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol. 70:5778-5786. https://doi.org/10.1128/AEM.70.10.5778-5786.2004
  40. Li, J. L. and I. B. Heath. 1992. The phylogenetic-relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the chytridiomycota. 1. cladistic-analysis of ribosomal-RNA sequences. Can. J. Bot. 70:1738-1746. https://doi.org/10.1139/b92-215
  41. Lin, C. Z., B. Flesher, W. C. Capman, R. I. Amann and D. A. Stahl. 1994. Taxon specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst. Appl. Microbiol. 17:418-424. https://doi.org/10.1016/S0723-2020(11)80059-7
  42. Lin, C., L. Raskin and D. A. Stahl. 1997. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analysis using rRNA-targeted oligonucleotide probes. FEMS Microbiol. Ecol. 22:281-294. https://doi.org/10.1111/j.1574-6941.1997.tb00380.x
  43. Lueders, T., K. J. Chin, R. Conrad and M. Friedrich. 2001. Molecular analyses of methyl-coenzyme M reductase alphasubunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ. Microbiol. 3:194-204. https://doi.org/10.1046/j.1462-2920.2001.00179.x
  44. Luton, P. E., J. M. Wayne, R. J. Sharp and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148:3521-3530. https://doi.org/10.1099/00221287-148-11-3521
  45. Machmuller, A., C. R. Soliva and M. Kreuzer. 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod. Nutr. Dev. 43:41-55 https://doi.org/10.1051/rnd:2003005
  46. Makkar, H. and C. S. McSweeney. 2005. Methods in Gut Microbial Ecology for Ruminants. Springer, The Netherlands. p. 225.
  47. Manefield, M., A. S. Whiteley, N. Ostle, P. Ineson and M. J. Bailey. 2002. Technical considerations for RNA based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Commun. Mass Spectrom. 16:2179-2183. https://doi.org/10.1002/rcm.782
  48. Michalet-Doreau, B., I. Fernandez, C. Peyron, L. Millet and G. Fonty. 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 41:187-194. https://doi.org/10.1051/rnd:2001122
  49. Miller, T. L. and M. J. Wolin. 1986. Methanogens in human and animal digestive tracts. Syst. Appl. Microbiol. 7:223-229 https://doi.org/10.1016/S0723-2020(86)80010-8
  50. Nercessian, D., M. Upton, D. Loyd and C. Edwards. 1999. Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol. Lett. 173:425-429 https://doi.org/10.1111/j.1574-6968.1999.tb13534.x
  51. Neufeld, J. D., Z. Yu, W. Lam and W. W. Mohn. 2004a. SARST, Serial Analysis of Ribosomal Sequence Tags. pp. 543-568. In. 'Molecular Microbial Ecology Manual'. 2nd Edition. (Ed. G. A. Kowalchuk, F. J. de Bruijin, I. M. Head, A. D. L. Akkermans, J. D. van Elsaa), Kluwer Academic Publishers, The Netherlands.
  52. Neufeld, J. D., Z. Yu, W. Lam and W. W. Mohn. 2004b. Serial analysis of ribosomal sequence tags (SARST): a highthroughput method for profiling complex microbial communities. Environ. Microbiol. 6:131-144. https://doi.org/10.1046/j.1462-2920.2003.00547.x
  53. Nicholson, M. J., E. J. Kim, M. K. Theodorou and J. L. Brookman 2002. Understanding the molecular ecology of rumen fungi-A DDGE approach. In 'Beyond Antimicrobials- the Future of Gut Microbiology' (Ed. R. J Wallace). Proceedings of the 3rd RRI-INRA, Aberdeen
  54. Obispo, N. E. and B. A. Dehority. 1992. A most probable number method for enumeration of rumen fungi with studies on factors affecting their concentration in the rumen. J. Microbiol. Methods. 16:259-270 https://doi.org/10.1016/0167-7012(92)90016-W
  55. Orpin, C. G. 1975. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 91:249-262 https://doi.org/10.1099/00221287-91-2-249
  56. Orpin, C. G. 1994. Anaerobic fungi: taxonaomy, biology, and distribution in nature. In 'Anaerobic Fungi: Biology, Ecology and Function' (Ed. C. G. Orpin and D. O. Mountfort). Mycology series v. 12, Marcel Dekker, New York, pp. 1-45.
  57. Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In 'The Rumen Microbial Ecosystem'. 2nd edn, (Ed. P. N. Hobson and C. S. Stewart), pp. 140-195. Blackie, London.
  58. Ouwerkerk, D., A. V. Klieve and R. J. Forster. 2002. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J. Appl. Microbiol. 92:753-758. https://doi.org/10.1046/j.1365-2672.2002.01580.x
  59. Ozkose, E., B. J. Thomas, D. R. Davies, G. W. Griffith and M. K. Theodorou. 2001. Cyllamyces aberensis gen. nov sp. nov., A new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can. J. Bot. 79:666-673. https://doi.org/10.1139/cjb-79-6-666
  60. Ozutsumi, Y., K. Tajima, A. Takenaka and H. Itabashi. 2005. The Effect of Protozoa on the Composition of Rumen Bacteria in Cattle Using 16S rRNA Gene Clone Libraries. Biosci. Biotechnol. Biochem. 69:499-506. https://doi.org/10.1271/bbb.69.499
  61. Prescott, D. M. 1994. "The DNA of ciliated protozoa". Microbiol. Rev. 58(2):233-67
  62. Radajewski, S., P. Ineson, N. R. Parekh and J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646-649. https://doi.org/10.1038/35001054
  63. Radajewski, S., I. R. McDonald and J. C. Murrell. 2004. Stable isotope probing of nucleic acids to identify active microbial populations. In 'Molecular Microbial Ecology Manual', 2 nd edn, pp. 1661-1672. Kluwer Academic Publishers, Netherlands.
  64. Regensbogenova, M., P. Pristas, P. Javorsky, S. Y. Moon-van der Staay, G. W. Moon-van der Staay, J. H. Hackstein, N. R. McEwan and C. J. Newbold. 2004a. Assessment of ciliates in the sheep rumen by DGGE. Lett. Appl. Microbiol. 39:144-147. https://doi.org/10.1111/j.1472-765X.2004.01542.x
  65. Regensbogenova, M., S. Kisidayova, T. Michalowski, P. Javorsky, S. Y. Moon-van-der-Staay, G. W. Moon-an-der-Staay, J. H. Hackstein, N. R. McEwan, J.-P. Jouany, C. J. Newbold and P. Pristas. 2004b. Rapid identification of rumen protozoa by restriction analysis of amplified 18S rRNA genes. Acta Protozool. 43:219-224.
  66. Ronn, R., A. E McCaig, B. S. Griffiths and J. I. Prosser. 2002. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 68:6094-6105. https://doi.org/10.1128/AEM.68.12.6094-6105.2002
  67. Schloss, P. D., B. R. Larget and J. Handelsman. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol. 70:5485-5492. https://doi.org/10.1128/AEM.70.9.5485-5492.2004
  68. Schonhusen, U., R. Zitnan, S. Kuhla, W. Jentsch, M. Derno and J. Voigt. 2003. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch. Tierernahr 57:279-295.
  69. Sharma, R., S. J. John, D. M. Damgaard and T. A. McAllister. 2003. Extraction of PCR-quality plant and microbial DNA from total rumen contents. Biotechniq. 34:92-97.
  70. Shin, E. C., K. M. Cho, W. J. Lim, S. Y. Hong, C. L. An, E. J. Kim, Y. K. Kim, B. R. Choi, J. M. An, J. M. Kang, H. Kim and H. D. Yun. 2004. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J. Appl. Microbiol. 97:378-383. https://doi.org/10.1111/j.1365-2672.2004.02304.x
  71. Skillman, L. C., P. N. Evans, G. E. Naylor, B. Morvan, G. N. Jarvis and K. N. Joblin. 2004. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277-285. https://doi.org/10.1016/j.anaerobe.2004.05.003
  72. Skillman, L. C., A. F. Toovey, A. J. Williams and A.-D. G. Wright. 2006. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between protozoal populations in sheep fed a hay based diet. Appl. Environ. Microbiol. 72:200-206. https://doi.org/10.1128/AEM.72.1.200-206.2006
  73. Snell-Castro, R., J. J. Godon, J. P. Delgenes and P. Dabert. 2005. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. FEMS Microbiol. Ecol. 52:229-242. https://doi.org/10.1016/j.femsec.2004.11.016
  74. Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084.
  75. Stewart, C. S., H. J. Flint and M. P. Bryant. 1998. The rumen bacteria, In 'The Rumen MIcrobial Ecosystem', 2nd ed., (Ed. P. N. Hobson and C. S. Stewart). pp. 10-72. Blackie Academic and Professionals, New York, NY.
  76. Sylvester, J. T., S. K. R. Karnati, Z. Yu, M. Morrison and J. L. Firkins. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutrition. 134:3378-3384. https://doi.org/10.1093/jn/134.12.3378
  77. Sylvester, J. T., S. K. Karnati, Z. Yu, C. J. Newbold and J. L. Firkins. 2005. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J. Dairy Sci. 88:2083-2095. https://doi.org/10.3168/jds.S0022-0302(05)72885-X
  78. Tajima, K., R. I. Aminov, T. Nagamine, K. Ogata, M. Nakamura, H. Matsui and Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29:159-169. https://doi.org/10.1111/j.1574-6941.1999.tb00607.x
  79. Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Nakamura, R. I. Aminov and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273-284. https://doi.org/10.1006/anae.2000.0353
  80. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  81. Theodorou, M. K., M. Gill, C. Kingspooner and D. E. Beever. 1990. Enumeration of Anaerobic Chytridiomycetes as Thallus-Forming Units- Novel Method for Quantification of Fibrolytic Fungal Populations From the Digestive-Tract Ecosystem. Appl. Environ. Microbiol. 56:1073-1078.
  82. Tokura, M., I. Chagan, K. Ushida and Y. Kojima. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 39:123-128. https://doi.org/10.1007/s002849900432
  83. Weimer, P. J., G. C. Waghorn, C. L. Odt and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82:122-134. https://doi.org/10.3168/jds.S0022-0302(99)75216-1
  84. White, B. A., I. K. O. Cann, S. A. Kocherginskaya, R. I. Aminov, L. A. Thill, R. I. Mackie and R. Onodera. 1999. Molecular analysis of archaea, bacteria and eucarya communities in the rumen: Review. Asian-Aust. J. Anim. Sci. 12:129-138. https://doi.org/10.5713/ajas.1999.129
  85. Whitford, M. F., R. J. Forster, C. E. Beard, J. Gong and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153-163. https://doi.org/10.1006/anae.1998.0155
  86. Whitford, M. F., R. M. Teather and R. J. Forster. 2001. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol. 1:5. https://doi.org/10.1186/1471-2180-1-5
  87. Williams, A. G., and G. S. Coleman. 1998. The rumen protozoa, In (Ed. P. N. Hobson and C. S. Stewart), The Rumen Microbial Ecosystem, Blackie Acad. Profess. New York. pp. 73-139.
  88. Wintzingerode, F. von, U. B. Gobel and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  89. Wright, A.-D. G. and C. L. Pimm. 2003. Improved strategy for presumptive identification of methanogens using 16S riboprinting. J. Microbiol. Mthds. 55:337-349. https://doi.org/10.1016/S0167-7012(03)00169-6
  90. Wright, A. D. G., K. Tajima and R. I. Aminov. 2005. 16S/18S rDNA clone library construction and analysis. In Methods in Gut Microbial Ecology for ruminants (Ed. H. makkar and C. S. McSweeney). Springer, The Netherlands.
  91. Wright, A-D. G., A. F. Toovey and C. L. Pimm. 2006. Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe. In press.
  92. Wright, A.-D. G., A. J. Williams, B. Winder, C. Christophersen, S. Rodgers and K. Smith. 2004. Molecular diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004
  93. Yanagita, K., Y. Kamagata, M. Kawaharasaki, T. Suzuki, Nakamura and Y. H. Minato. 2000. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection Methanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem. 64:1737-1742. https://doi.org/10.1271/bbb.64.1737
  94. Yu, C.-P., R. Ahuja, G. Sayler and K.-H. Chu. 2005. Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl. Environ. Microbiol. 71:1433-1444. https://doi.org/10.1128/AEM.71.3.1433-1444.2005
  95. Yu, Z. and M. Morrison. 2004a. Improved extraction of PCRquality community DNA from digesta and fecal samples. BioTech. 36:808-812. https://doi.org/10.2144/04365ST04
  96. Yu, Z. and M. Morrison. 2004b. "Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis." Appl. Environ. Microbiol. 70:4800-4806. https://doi.org/10.1128/AEM.70.8.4800-4806.2004
  97. Yu, Z. and R. J. Forster. 2005. PCR-based methods for analysis of populations and gene expression. 3.1 Nucleic acid extraction, oligonucleotide probes and PCR methods. In 'Methods in Gut Microbial Ecology for Ruminants' (Ed. H. Makkar and C. S. McSweeney). Springer, The Netherlands.
  98. Ziemer, C. J., R. Sharp, M. D. Stern, M. A. Cotta, T. R. Whitehead and D. A. Stahl. 2000. Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes. Environ. Microbiol. 2:632-643. https://doi.org/10.1046/j.1462-2920.2000.00146.x
  99. Zoetendal, E. G., S. Koike and R. I. Mackie. 2003. A critical view on molecular ecology of the gastrointestinal tract. In 'Matching Herbivore Nutrition to Ecosystem Biodiversity'. (Ed.: L. tMannetje). Proceedings of the sixth international symposium on the nutrition of herbivores,. pp. 59-78. Merida, Mexico.
  100. Zoetendal, E. G., C. T. Collier, S. Koike, R. I. Mackie and H. R. Gaskins. 2004. Molecular ecological analysis of the gastrointestinal microbiota: A review. J. Nutr. 134:465-472. https://doi.org/10.1093/jn/134.2.465

Cited by

  1. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle vol.146, pp.02, 2008, https://doi.org/10.1017/S0021859608007752
  2. Recent developments in nucleic acid based techniques for use in rumen manipulation vol.38, pp.spe, 2009, https://doi.org/10.1590/S1516-35982009001300034
  3. Phylogenetic analysis of 16S rRNA gene sequences reveals rumen bacterial diversity in Yaks (Bos grunniens) vol.37, pp.1, 2010, https://doi.org/10.1007/s11033-009-9794-x
  4. Assessment of protozoa in Yunnan Yellow Cattle rumen based on the 18S rRNA sequences vol.38, pp.1, 2011, https://doi.org/10.1007/s11033-010-0143-x
  5. Dasytricha Dominance in Surti Buffalo Rumen Revealed by 18S rRNA Sequences and Real-Time PCR Assay vol.63, pp.3, 2011, https://doi.org/10.1007/s00284-011-9975-4
  6. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem vol.95, pp.5, 2012, https://doi.org/10.1007/s00253-012-4262-2
  7. Identification of metabolically active proteobacterial and archaeal communities in the rumen by DNA- and RNA-derived 16S rRNA gene vol.115, pp.3, 2013, https://doi.org/10.1111/jam.12270
  8. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0187858
  9. — Invited Review — Metagenomic investigation of gastrointestinal microbiome in cattle vol.30, pp.11, 2017, https://doi.org/10.5713/ajas.17.0544
  10. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage1 vol.93, pp.5, 2015, https://doi.org/10.2527/jas.2014-8287
  11. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency pp.1949-0984, 2018, https://doi.org/10.1080/19490976.2018.1505176
  12. Modifications and optimization of manual methods for polymerase chain reaction and 16S rRNA gene sequencing quality community DNA extraction from goat rumen digesta vol.11, pp.7, 2018, https://doi.org/10.14202/vetworld.2018.990-1000
  13. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0249-x
  14. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments vol.97, pp.17, 2007, https://doi.org/10.1007/s00253-013-5102-8