미숙아 합병증 발생과 혈중 활성 산화물 농도와의 관계

Correlation of serum total hydroperoxide levels and diseases of prematurity

  • 김신혜 (포천중문 의과대학교 소아과학교실) ;
  • 허혜영 (포천중문 의과대학교 소아과학교실) ;
  • 이규형 (포천중문 의과대학교 소아과학교실) ;
  • 문자영 (포천중문 의과대학교 재활의학과교실) ;
  • 채규영 (포천중문 의과대학교 소아과학교실)
  • Kim, Shin-Hye (Department of Pediatrics, Pochon CHA University) ;
  • Hur, Hae Young (Department of Pediatrics, Pochon CHA University) ;
  • Lee, Kyu Hyoung (Department of Pediatrics, Pochon CHA University) ;
  • Moon, Ja Young (Department of Physical medicine and Rehabilitation, Pochon CHA University) ;
  • Chae, Kyu Young (Department of Pediatrics, Pochon CHA University)
  • 투고 : 2007.07.16
  • 심사 : 2007.07.30
  • 발행 : 2007.08.15

초록

목 적 : 미숙아에서 발생하는 뇌실주변부 백질연화증, 뇌실내 출혈, 기관지폐 이형성증, 미숙아 망막증, 괴사성 장염 등의 합병증이 활성 산소에 의한 세포 및 조직 손상과 연관성이 있다는 보고들이 있어 왔다. 이에 저자들은, 활성 산소와 세포 내 분자들이 반응할 때 생성되는 활성 산화물의 농도를 측정하여, 미숙아와 정상 만삭아의 혈중 활성 산화물의 농도를 비교하고, 활성 산화물의 농도와 미숙아 합병증과의 연관성을 알아보고자 본 연구를 시행하였다. 방 법 : 2005년 7월부터 2006년 4월 사이에 포천중문의대 분당차병원 신생아 집중치료실에 입원한 36주 이하의 미숙아 39명과 37주 이상의 정상 만삭아 24명을 대상으로 하였다. 정상 만삭아군에서 출생일 혈청 total hydroperoxide(TH) 농도를 측정하였고, 미숙아군에서는 출생일과 생후 7일 째 혈청 TH 농도를 측정하였다. 만삭아군과 미숙아군의 출생일 혈청 TH 농도를 비교하였고, 미숙아군의 분만력 상의 특징, 혈액검사 소견, 뇌 초음파 및 뇌 자기 공명영상 소견, 임상경과 및 예후를 후향적으로 조사하여, 미숙아 합병증이 발생한 군과 합병증이 없었던 군으로 나누어 출생일과 생후 7일째 혈청 TH 농도를 비교 분석하였다. 결 과 : 미숙아군과 만삭아군의 출생일 TH 농도를 비교한 결과, 미숙아군은 평균 $186{\pm}42U.carr/L$, 만삭아군은 $157{\pm}36U.carr/L$로 미숙아군에서 유의하게 높았다. 미숙아군에서, 합병증이 발생한 군과 발생하지 않은 대조군의 출생일과 생후 7일 혈청 TH 농도를 비교한 결과, 출생일에는 합병증군 $211{\pm}37U.carr/L$, 비합병증군 $168{\pm}36U.carr/L$로 합병증군에서 유의하게 높았으나, 생후 7일에는 합병증군 $205{\pm}64U.carr/L$, 비합병증군 $188{\pm}32U.carr/L$로 합병증군이 다소 높았으나 통계적으로 유의한 차이는 보이지 않았다. 그러나 합병증이 발생하지 않은 미숙아군과 정상 만삭아군의 출생일 혈청 TH 농도에는 통계적으로 유의한 차이가 없었다. 합병증 발생의 위험 인자인 재태주령, 5분 Apgar 점수, 동맥혈 가스검사의 pH, 출생일 TH 농도를 분석한 결과, 재태주령(Odds ratio 0.586, 95% CI 0.370-0.927, P=0.022)과 TH 농도 (Odds ratio 1.046, 95% CI 1.010-1.085, P=0.013)가 독립적으로 합병증 발생에 유의한 영향을 미치는 위험 인자였다. 결 론 : 합병증이 발생한 미숙아는 합병증이 발생하지 않은 미숙아나 만삭아에 비해 출생일 혈청 TH의 농도가 높으며, 미숙아의 출생일 혈청 TH 농도는 미숙아 합병증 발생에 독립적으로 영향을 미치는 인자이다.

Purpose : Total hydroperoxide (TH), free radical-mediated oxidation product can be used as a measure of free radical injury. The aim of the present study was to see if preterm newborns are at increased risk for oxidative stress compared with term newborns, and to determine whether oxidative stress during postnatal first 1 week is associated with clinical outcomes in preterm infants. Methods : Serum TH levels of preterm infants (n=39) were compared with those of term infants (n=24) on the postnatal day 1. Among the preterm infants, serum TH levels of uncomplicated group (n=23) were also compared with those of complicated group (n=16) who developed oxygen radical related diseases on the postnatal day 1 and 7. Retrospective analysis was performed to find out risk factors for oxygen radical injuries based on birth history, laboratory data, neuroimaging findings and clinical progress in two preterm groups. Results : Serum TH levels on postnatal day 1 were higher in the preterm infant group than the term infant group. Serum TH levels on postnatal day 1 in the complicated preterm infant group were significantly higher compared with uncomplicated group, but there was no significant difference in serum TH levels on postnatal day 7. Also, there was no significant difference in serum TH levels between uncomplicated preterm infants and term infants. Serum TH level on postnatal day 1 was independently associated with higher morbidity after adjusting for gestational age, Apgar score (5 min), arterial blood gas analysis. Conclusion : Complicated preterm newborns are at increased risk for oxidative stress compared with uncomplicated newborns and term newborns. Oxidative injury during the prenatal or postnatal day 1 is associated with adverse outcomes in preterm infants. Elevated TH levels on postnatal day 1 may have a value to predict clinical outcomes in preterm infants.

키워드

참고문헌

  1. Halliwell B, Glutteridge JM. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol 1990;186:1-85 https://doi.org/10.1016/0076-6879(90)86093-B
  2. Allen RG. Oxygen-reactive species and antioxidant responses during development: the metabolic paradox of cellular differentiation. Proc Soc Exp Biol Med 1991;196:117-29
  3. Sohal RS, Allen RG, Nations C. Oxygen free radicals play a role in cellular differentiation: an hypothesis. J Free Radic Biol Med 1986;2:175-81 https://doi.org/10.1016/S0748-5514(86)80067-8
  4. Mates M. Effects of antioxidant enxymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000;153:83-104 https://doi.org/10.1016/S0300-483X(00)00306-1
  5. McCord JM, Fridovich I. The biology and pathology of oxygen radicals. Ann Int Med 1978;89:122-7 https://doi.org/10.7326/0003-4819-89-1-122
  6. Frank L, Sosenko IR. Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure : increased susceptibility to pulmonary oxygen toxicity compared with term rabbits. Pediatr Res 1991;29:292-6 https://doi.org/10.1203/00006450-199103000-00014
  7. Frank L, Sosenko IR. Development of lung anti-oxidant enzyme system in late gestation : possible implications for the prematurely born infant. J Pediatr 1987;110:9-14 https://doi.org/10.1016/S0022-3476(87)80279-2
  8. Frank L, Groseclose EE. Preparation for birth into an O2- rich environment: the antioxidant enzymes in the developing rabbit lung. Pediatr Res 1984;18:240-4 https://doi.org/10.1203/00006450-198403000-00004
  9. Phylactos AC, Leaf AA, Costeloe K, Clawford MA. Erythrocyte copper/zinc superoxide dismutase exhibits reduced activity in preterm and low birth weight infants at birth. Acta Paediatr 1985;84:1421-5 https://doi.org/10.1111/j.1651-2227.1995.tb13580.x
  10. Jain A, Mehta T, Auld PA, Rodrigues J, Ward RF, Schwartz MK, et al. Glutathione metabolism in newborns : Evidence for glutathione deficiency in plasma, bronchoalveolar lavage fluid, and lymphocytes in prematures. Pediatr Pulmonol 1995;20:160-6 https://doi.org/10.1002/ppul.1950200306
  11. Gartner A. The role of hyperoxia in the aetiology of retinopathy of prematurity. Doc Ophthalmol 1990;74:187-93 https://doi.org/10.1007/BF02482608
  12. Tin W, Milligan DW, Pennefather P, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 2001;84:F106-10 https://doi.org/10.1136/fn.84.2.F106
  13. Weinberger B, Laskin DL, Keck DE, Laskin JD. Oxygen toxicity in premature infants. Toxicol Appl Pharmacol 2002; 181:60-7 https://doi.org/10.1006/taap.2002.9387
  14. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, incandela L, et al. A simple test to monitor oxidative stress. Int Angiol 1999;18:127-30
  15. Buonocore G, Perrrone S, Longini M, Terzuoli L, Bracci R. Total hydroperoxide and advanced oxidation protein products in preterm hypoxicc babies. Pediatr Res 2000;47:221-4 https://doi.org/10.1203/00006450-200002000-00012
  16. Walsh MC, Kilegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am 1986;33: 179-201 https://doi.org/10.1016/S0031-3955(16)34975-6
  17. Bancalari E, Abdenour GE, Feller R, Gannon J. Bronchopulmonary dysplasia. Clinical presentation. J Pediatr 1979;95: 819-23 https://doi.org/10.1016/S0022-3476(79)80442-4
  18. Saugstad OD. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. Acta Paediatr 1996;85:1-4
  19. Jacob RA. The integrated antioxidant system. Nutr Res 1995;15:755-66 https://doi.org/10.1016/0271-5317(95)00041-G
  20. Bayir H. Reactive oxygen species. Crit Care Med 2005;33: S498-501 https://doi.org/10.1097/01.CCM.0000186787.64500.12
  21. O'Donovan DJ, Fernandes CJ. Free radical and diseases in premature infants. Antioxid Redox Signal 2004;6:169-76 https://doi.org/10.1089/152308604771978471
  22. Ogihara T, Hirano K, Morinobu T, Kim HS, Hiroi M, Ogihara H, et al. Raised concentrations of aldehyde lipid peroxidation products in premature infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed 1999;80:21-5 https://doi.org/10.1136/fn.80.1.F21
  23. Shock BC, Sweet DG, Halliday HL, Young IS, Ennis M. Oxidative stress in lavage fluid of preterm infants at risk of chronic lung disease. Am J Physiol Lung Cell Mol Physiol 2001;281:1386-91 https://doi.org/10.1152/ajplung.2001.281.6.L1386
  24. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms and prevention. J Neurosci 1993;13:1441-53 https://doi.org/10.1523/JNEUROSCI.13-04-01441.1993
  25. Yonezawa M, Bac SA, Gan X, Rosenberg PA, Volpe JJ. Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffuse glial factor. J Neurochem 1996;67:566-73 https://doi.org/10.1046/j.1471-4159.1996.67020566.x
  26. Inder T, Mocatta T, Darlow B, Spencer C, Volpe JJ, Winterbourn C. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Paediatr Res 2002;52:213-8 https://doi.org/10.1203/00006450-200208000-00013
  27. Ment LR, Stewart WB, Duncan CC, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. J Neurosurg 1982;57:219-23 https://doi.org/10.3171/jns.1982.57.2.0219
  28. Mc Cord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159-63 https://doi.org/10.1056/NEJM198501173120305
  29. Ment LR, Stewart WB, Scott DT, Duncan CC. Beagle puppy model of intraventricular hemorrhage : randomized indomethacin prevention trial. Neurology 1983;33:179-84 https://doi.org/10.1212/WNL.33.2.179
  30. Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage: ethamsylate studies. Prostaglandins 1984;27:245-56 https://doi.org/10.1016/0090-6980(84)90077-7
  31. Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage. Effect of superoxide dismutase on cerebral blood flow and prostagladins. J Neurosurg 1985; 62:563-9 https://doi.org/10.3171/jns.1985.62.4.0563
  32. Nielson JC, Naash MI, Anderson RE. The regional distribution of vitamins E and C in mature and premature human retinas. Invest Ophthalmol Vis Sci 1988;29:22-6
  33. Oliver PD, Newsome DA. Mitochondrial superoxide dismutase in mature and developing human retinal pigmental epithelium. Invest Ophthalmol Vis Sci 1992;33;1909-18
  34. Gardner A. The role of hyperoxia in the aetiology of retinopathy of prematurity. Doc Ophthalmol 1990;74:187-93 https://doi.org/10.1007/BF02482608
  35. Mc Leod DS, Brownstein R, Lutty GA. Vaso-obliteration in the canine model of oxygen-induced retinopathy Invest Ophthalomol Vis Sci 1996;37:300-11
  36. Parks DA, Granger DN. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand 1986;548:87-99
  37. Nycyk JA, Drury JA, Cooke RW. Breath pentane as a marker for lipid peroxidation and adverse outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed 1998;79:67-9 https://doi.org/10.1136/fn.79.1.F67
  38. Piktanen OM, Hallman M, Andersson SM. Correlation of free oxygen radical-induced lipid peroxidation with outcome in very low birth weight infants. J Pediatr 1990;116:760-4 https://doi.org/10.1016/S0022-3476(05)82668-X
  39. Buonocore G, Perrone S, Longini M, Vezzosi P, Marzocchi B, Paffetti P, et al. Oxidative stress in preterm neonates at birth and on the seventh day of life Pediatr Res 2002;52: 46-9 https://doi.org/10.1203/00006450-200207000-00010
  40. Weinberger B, Nisar S, Anwar M, Ostfeld B, Hegyi T. Lipid peroxidation in cord blood and neonatal outcome. Pediatr Int 2006;48:479-83 https://doi.org/10.1111/j.1442-200X.2006.02257.x