Status of Soil Remediation and Technology Development in Korea

국내 오염토양 복원 현황과 기술 동향

  • Yang, Ji-Won (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, You-Jin (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 양지원 (한국과학기술원 생명화학공학과) ;
  • 이유진 (한국과학기술원 생명화학공학과)
  • Received : 2007.06.05
  • Accepted : 2007.06.06
  • Published : 2007.08.31

Abstract

Soil contamination in Korea has been accelerated every year. Because of their persistence and cumulative tendency in the environment, soil contaminants have potential long-term environmental and health concerns and it is estimated to cost enormous expense for clean-up. Korea government has legislated the law on conservation of soil environment in mid 1990s, and managed and treated hazardous wastes in contaminated sites as a remediation policy since then. Soil remediation technologies are classified into in-situ/ex-situ or biological/physico-chemical/thermal processes according to applied places or treatment methods, respectively. In Korea, clean-up of polluted sites has been mostly carried out at military areas, railroad-related sites and small-scale oil spilt sites. For these cases, in-situ remediation technologies such as soil vapor extraction (SVE) and bioventing were mainly used. In recent days, an environmental-friendly soil remediation emerged as a new concept - for example, a new soil remediation process using nanotechnology or molecular biological study and an integrated process which can overcome the limitation of individual process. To have better applicability of remediation technologies, comprehensive understandings about the pollutants and soil characteristics and the suitable techniques are required to be investigated. Above all, development of environmental technologies based on the sustainability accompanied by public attention can improve soil environment in Korea.

국내의 평균적인 토양오염도는 매년 증가하고 있으며, 오염물질의 지속성 및 잔류성이 큰 토양오염의 특성상 이를 복원하기 위해서는 막대한 비용이 소모될 것으로 추정된다. 우리나라에서는 토양 오염에 대한 사회적 관심이 증가함에 따라 1990년대 중반부터 토양 환경 관리와 복원을 위해 정책적으로 복원 기술의 개발과 오염토양 복원 사업을 추진하고 있다. 오염토양 복원 기술은 처리 위치별로 원위치 기술과 비원위치 기술로 나뉘며, 오염원의 제거방법에 따라 생물학적, 물리화학적, 열적 기술로 분류할 수 있다. 국내에서는 군부대 및 철도청 부지, 소규모의 유류 오염 지역에 대해 복원 사업을 실시한 사례가 대부분이며 석유화학 단지내의 오염 등은 회사 자체에서 내부적으로 처리하고 있어 일반에 공개되지는 않고 있지만 그 규모는 상당한 것으로 추산되고 있다. 대부분의 복원사업에는 가장 경제성이 입증된 토양증기추출법, 생물학적 통풍법과 같은 원위치 정화기술이 사용되었다. 최근에는 첨단 기술을 도입하여 환경친화적 토양 복원 기술을 개발하려는 연구가 진행 중이며, 이러한 연구의 예로서 나노 기술과 분자 생물학적 기법을 이용한 복원 기술 개발, 개별 기술의 한계를 극복하기 위한 통합기술 개발 등이 있다. 효율적인 오염토양의 복원을 위해서는 오염물질과 오염부지의 특성을 고려하여 연구 대상 기술의 현장 적용성을 높여야 하며, 무엇보다 토양에 대한 인식 변화와 환경 개선을 위한 지속적인 노력이 필요하다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. Kim, J.-S., 'Policy of Soil Environmental Conservation - Current Issues and the Future,' Environment preservation, 6-9(2005)
  2. Jeong, S.-W., 'Environmental Impact Assessment Schemes Considering Fate and Transport of Soil Contaminants,' Research report, Korea Environment Institute(2003)
  3. Ministry of Environment, 'Operational Results of Soil Network and Investigation of Actual Conditions in 2005,' Korea(2006)
  4. Park, Y.-H., Yoon, S.-S., Bang, S.-W., Kim, M.-J., Yang, J.-U. and Lee, Y.-H., 'Management and Remediation Policy of Contaminated Lands in Korea,' Research Report, Korea Environment Institute(2002)
  5. Lee, C.-H., 'Status and Prosect of Soil Remediation Industry,' Konetic report, http://www.konetic.or.kr/
  6. http://www.frtr.gov/matrix2/section3/sec3_int.html
  7. Kwak, M., 'Prospect and Present Status of Soil Environmental Remediation Industry,' J. KSEE, 29(3), 271-274(2007)
  8. Ministry of Environment, 'Case Study of Soil Remediation Technology,' Korea(2002)
  9. Lee, J.-Y. and Moon, C.-H., 'Remediation and Reuse of Contaminated Site,' J. Korean Geotechnical Society, 21(11), 26-44(2005)
  10. Shin, J.-K., 'Case Study of Soil Pollution in Abandoned Mines,' Symposium on Geological Disaster and Remediation Technology, Nov., Seoul, 95-116(2002)
  11. Kim, M.-J., 'Cleanup and Remediation of Heavy Metal Contaminated Contaminated Soil,' Symposium on Geological Disaster and Remediation Technology, Nov. Seoul, 117-141(2002)
  12. www.konetic.or.kr/env_info/report/13-6.pdf, 'Analysis of Current Status of Soil Remediation,' Konetic report(2002)
  13. Lee, J.-Y. and Park, K.-J., 'Current Status and Method of Soil Remediation Treatment in Korea,' Konetic report, http://www.konetic.or.kr/
  14. Kim, K.-W., 'Emerging Remediation Technologies for the Contaminated Soil/groundwater in the Metal Mining Area,' Econ, Environ., 37(1), 99-106(2004)
  15. Tratnyek, P. G. and Johnson, R. L., 'Nanotechnologies for Environmental Cleanup,' Nanotoday, 1(2), 44-48(2006)
  16. Wang, C. and Zhang, W., 'Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,' Environ. Sci. Technol., 31(7), 2154-2156(1997) https://doi.org/10.1021/es970039c
  17. Amold, W. A. and Roberts, A. L., 'Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles,' Environ. Sci. Technol., 34(9), 1794-1805(2000) https://doi.org/10.1021/es990884q
  18. Ponder, S. M., Darab, J. C. and Mallouk, T. E., 'Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported Nanoscale Zero-valent Iron,' Environ. Sci. Technol., 34(12), 2564-2569 (2000) https://doi.org/10.1021/es9911420
  19. Ryu, A. and Choi, H., 'Application of Nano-technology to Contaminated Soil/groundwater Remediation,' J. KSEE, 29(3), 257-261(2007)
  20. Lee, K.-K., 'Development of Environmental-friendly Technology for the Remediation of Soil/groundwater System,' News & Information for Chemical Engineers, 22(2), 152-158(2004)
  21. Daims, H., Taylor, M. W. and Wagner, M., 'Wastewater Treatment: a Model System for Microbial Ecology,' Trends in biotechnology, 24(11), 483-489(2006) https://doi.org/10.1016/j.tibtech.2006.09.002
  22. Casiot, C., Pedron, V., Bruneel, O., Duran, R., Personné, J. C., Grapin, G., Drakidès, C. and Elbaz-Poulichet, F., 'A New Bacterial Strain Mediating As Oxidation in the Fe-rich Biofilm Naturally Growing in a Groundwater Fe Treatment Pilot Unit,' Chemosphere, 64(3), 492-496(2006) https://doi.org/10.1016/j.chemosphere.2005.11.072
  23. Baek, K. H., Yoon, B. D. and Kim, B. H., 'Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oilcontaminated Soil with Different Treatments,' J. Microbiology and Biotechnology, 17(1), 67-73(2007)
  24. Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka., M. and Parker, R., 'Electrokinetic Remediation: Basic and Technology Status,' J. Hazard. Mater., 40(2), 117-137(1995) https://doi.org/10.1016/0304-3894(94)00066-P
  25. Yang, J.-W., Lee, Y.-J., Park, J.-Y., Kim, S.-J. and Lee, J.-Y., 'Application of APG and Calfax 16L-35 on Surfactant-enhanced Electrokinetic Removal of Phenanthrene From Kaolinite,' Eng. Geol., 77(3-4), 243-251(2004) https://doi.org/10.1016/j.enggeo.2004.07.015
  26. Park, J.-Y., Kim, S.-J., Lee, Y.-J., Baek, K. and Yang, J.-W., 'EK-Fenton Process for Removal of Phenanthrene in a twodimensional Soil System,' Eng. Geol., 77(3-4), 217-224(2004)
  27. Kim, S.-J., Park, J.-Y., Lee, Y.-J., Lee, J.-Y. and Yang, J.-W., 'Application of a New Electrolyte Circulation Method for the ex Situ Electrokinetic Bioremediation of a Laboratory-prepared Pentadecane Contaminated Kaolinite,' J. Hazard. Mater., 118(1-3), 171-176(2004) https://doi.org/10.1016/j.jhazmat.2004.08.001
  28. Ministry of Science and Technology, 'Integrated Remediation of Underground Environment by Applying Micro-interfacial Phenomena,' Research Report of National research laboratory program, Korea(2004)