DOI QR코드

DOI QR Code

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Published : 2007.05.31

Abstract

Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Keywords

References

  1. Bernadac, A., Latche, A., Roustan, J. P., Bouzayen, M. and Pech, J. C. (2002) Fruit and vegetable biotechnology; in Fruit and Vegetable Biotechnology, Valpuesta, V. (ed.), pp. 257-261, Woodhead Publishing Limited, England.
  2. Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366. https://doi.org/10.1038/35053110
  3. Chen, Y-K., Lohuis, D., Goldbach, R. and Prins, M. (2004) High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol. Breeding 14, 215-226. https://doi.org/10.1023/B:MOLB.0000047769.82881.f5
  4. Dong, J. Z., Jia, Y. S. R. and Chua, N. H. (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Biotechnology 9, 858-863 https://doi.org/10.1038/nbt0991-858
  5. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 411, 494-498. https://doi.org/10.1038/35078107
  6. Fang, G. and Gourmet, R. (1990) Agrobacterium tumefacienes mediated transformation and regeneration of muskmelon plants. Plant Cell Rep. 9, 160-164.
  7. Farinelli, L., Malnoe, P. and Collet, G. F. (1992) Heterologous encapsidation of potato virus Y strain O (PVYO), with the transgenic coat protein of PVY strain N (PVYN) in Solanum tuberosum cv. Bintje. Biotechnology 10, 1020-1025. https://doi.org/10.1038/nbt0992-1020
  8. Fassuliotis, G. and Nelson, B. V. (1992) Regeneration of tetraploid muskmelons from cotyledons and their morphological differences from two diploid muskmelon genotypes. J. Am. Soc. Hortic. Sci. 1175, 863-866.
  9. Fuchs, M., McFerson, J. R., Tricoli, D. M., McMaster, J. R., Deng, R. Z., Boeshore, M. L., Reynolds, J. F., Russell, P. F., Quemada, H. D. and Gonsalves, D. (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol. Breeding 3, 279-290. https://doi.org/10.1023/A:1009640229952
  10. Gaba, V., Elman, E., Perl-Treves, R. and Gray, D. J. (1996) A theoretical investigation of the genetic variability in the ability of Agrobacterium to transform Cucumis melo L. in Gomez-Guillamon, M.L., Soria, C., Cuartero, J., Tores, J.A., Fernandez-Munoz, R., eds. Cucurbits Towards 2000, pp. 172-178, Proc. 6th Eucarpia Meeting on Cucurbit Genetics and Breeding, Malaga, Spain.
  11. Gaba, V., Less, H. and Antigus, Y. (1992) Transformation of melon by particle acceleration. Supplement of Plant Physiol. 99, 137.
  12. Gaba, V., Zelcer, A. and Gal-On, A. (2004) Cucurbit biotechnologythe importance of virus resistance. In Vitro Cell. Dev. Biol. Plant 40, 346-358. https://doi.org/10.1079/IVP2004554
  13. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. and Wilson, T. M. A. (1987) A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vitro. Nucleic Acids Res. 15, 8693-8711. https://doi.org/10.1093/nar/15.21.8693
  14. Golemboski, D., Lomonossoff, G. and Zaitlin, M. (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87, 6311-6315. https://doi.org/10.1073/pnas.87.16.6311
  15. Gonsalves, D., Xue, B., Yepes, M., Fuchs, M., Ling, K., Namba, S., Chee, P. and Slightom, J. L. (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J. Am. Soc. Hortic. Sci. 119, 345-355.
  16. Guillemaut, P. and Marechal-Drouard, L. (1992) Isolation of plant DNA: A fast, inexpensive and reliable method. Plant Mol. Biol. Rep. 10, 60-65. https://doi.org/10.1007/BF02669265
  17. Hamilton, A. J. and Baulcombe, D. C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952. https://doi.org/10.1126/science.286.5441.950
  18. Hammond, J. and Dienelt, M. M. (1997) Encapsidation of potyviral RNA in various forms of transgene coat protein is not correlated with resistance in transgenic plants. Mol. Plant Microbe Interact. 10, 1023-1027. https://doi.org/10.1094/MPMI.1997.10.8.1023
  19. Hofgen, R. and Willmitzer, L. (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16, 9877. https://doi.org/10.1093/nar/16.20.9877
  20. Jan, F.-J., Fagoaga, C., Pang, S-Z. and Gonsalves, D. (2000) A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81, 235-242. https://doi.org/10.1099/0022-1317-81-1-235
  21. Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. (1987) GUS fusion: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907.
  22. Kouassi, N. K., Chen, L., Sire, C., Bangratz-Reyser, M., Beachy, R. N., Fauquet, C. M. and Brugidou C. (2006) Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch. Virol. 151, 2111-2122. https://doi.org/10.1007/s00705-006-0802-3
  23. Lecoq, H., Ravelonandro, M., Wipf-Scheibel, C., Monsion, M., Raccah, B. and Dunez, J. (1993) Aphid transmission of a nonaphid- transmissible strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of plum pox potyvirus. Mol. Plant Microbe Interact 6, 403-406. https://doi.org/10.1094/MPMI-6-403
  24. Mazier, M., German-Retana, S., Flamain, F., Dubois, V., Botton, E., Sarnette, V., Gall, O. L., Candresse, T. and Maisonneuve, B. (2004) A simple and efficient method for testing Lettuce mosaic virus resistance in in vitro cultivated lettuce. J. Virol. Methods 116, 123-131. https://doi.org/10.1016/j.jviromet.2003.11.011
  25. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  26. Pang, S.-Z., Jan, F.-J. and Gonsalves, D. (1997) Non target DNA sequences reduce the transgene length necessary for RNAmediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. USA 94, 8261-8266
  27. Powell-Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T. and Beachy, R. N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738-743. https://doi.org/10.1126/science.3457472
  28. Russo, P. and Slack, S. A. (1998) Tissue culture methods for the screening and analysis of putative virus-resistant transgenic potato plants. Virology 88, 437-441.
  29. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York, USA.
  30. Sanford, J. C. and Johnston, S. A. (1985) The concept of parasitederived resistance-deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113, 395-405. https://doi.org/10.1016/S0022-5193(85)80234-4
  31. Smith, N. A., Singh, S. P., Wang, M-B., Stoutjesdijk, P. A., Green, A. G. and Waterhouse, P. M. (2000) Total silencing by intronspliced hairpin RNAs. Nature 407, 319-320. https://doi.org/10.1038/35030305
  32. Szittya, G., Molnar, A., Silhavy, D., Hornyik, C. and Burgyan, J. (2002) Short defective interfering RNAs of tombusviruses are not targeted but trigger posttranscriptional gene silencing against their helper virus. Plant Cell 14, 359-372. https://doi.org/10.1105/tpc.010366
  33. Tepfer, R., Matzeit, V., Gronenborn, B., Schell, J. and Steinbiss, H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890. https://doi.org/10.1093/nar/15.14.5890
  34. Vaucheret, H., Beclin, C. and Fagard, M. (2001) Post-transcriptional gene silencing in plants. J. Cell Sci. 114, 3083-3091.
  35. Waterhouse, P. M. and Helliwell, C. A. (2003) Exploring plant genomes by RNA-induced gene silencing. Nat. Rev. Genet. 4, 29-38. https://doi.org/10.1038/nrg982
  36. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M-B., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G. and Waterhouse, P. M. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581-590. https://doi.org/10.1046/j.1365-313X.2001.01105.x
  37. Zamore, P., Tuschl, T., Sharp, P. and Bartel, D. (2000) RNAi: double stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33. https://doi.org/10.1016/S0092-8674(00)80620-0

Cited by

  1. Conserved Sequences of Replicase Gene-Mediated Resistance to Potyvirus through RNA Silencing vol.52, pp.6, 2009, https://doi.org/10.1007/s12374-009-9071-5
  2. Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method vol.28, pp.7, 2009, https://doi.org/10.1007/s00299-009-0705-3
  3. Transgenic watermelon lines expressing the nucleocapsid gene of Watermelon silver mottle virus and the role of thiamine in reducing hyperhydricity in regenerated shoots vol.106, pp.1, 2011, https://doi.org/10.1007/s11240-010-9889-z
  4. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct vol.21, pp.5, 2012, https://doi.org/10.1007/s11248-011-9585-8
  5. Transgenic peppers that are highly tolerant to a new CMV pathotype vol.28, pp.2, 2009, https://doi.org/10.1007/s00299-008-0637-3
  6. Role of RNA interference in plant improvement vol.98, pp.6, 2011, https://doi.org/10.1007/s00114-011-0798-8
  7. RNA interference: concept to reality in crop improvement vol.239, pp.3, 2014, https://doi.org/10.1007/s00425-013-2019-5
  8. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W vol.30, pp.3, 2011, https://doi.org/10.1007/s00299-010-0951-4
  9. Are small RNAs a big help to plants? vol.52, pp.3, 2009, https://doi.org/10.1007/s11427-009-0034-3
  10. Molecular analysis of transgenic melon plants showing virus resistance conferred by direct repeat of movement gene of Cucumber green mottle mosaic virus vol.31, pp.8, 2012, https://doi.org/10.1007/s00299-012-1237-9
  11. Genetically engineered plants: greener than you think vol.2, pp.4, 2009, https://doi.org/10.1111/j.1751-7915.2009.00088.x
  12. Conserved sequence of replicase gene mediated resistance in Nicotiana tabacum L. cv Abirami through RNA silencing vol.142, pp.4, 2015, https://doi.org/10.1007/s10658-015-0658-z
  13. ASSESSMENT OF THE CUCUMBER MOSAIC VIRUS COAT PROTEIN BY EXPRESSION EVALUATION IN A GENETICALLY MODIFIED PEPPER AND ESCHERICHIA COLI BL21 vol.36, pp.4, 2012, https://doi.org/10.1111/j.1745-4514.2011.00548.x
  14. Small RNAs in plants: recent development and application for crop improvement vol.06, 2015, https://doi.org/10.3389/fpls.2015.00208
  15. Suppression of Papaya ringspot virus infection in Carica papaya with CAP-34, a systemic antiviral resistance inducing protein from Clerodendrum aculeatum vol.123, pp.2, 2009, https://doi.org/10.1007/s10658-008-9358-2
  16. RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava vol.12, pp.7, 2011, https://doi.org/10.1111/j.1364-3703.2010.00700.x
  17. Transgenic accumulation of a defective cucumber mosaic virus (CMV) replicase derived double stranded RNA modulates plant defence against CMV strains O and Y in potato vol.22, pp.6, 2013, https://doi.org/10.1007/s11248-013-9721-8
  18. Resistance against rhizomania disease via RNA silencing in sugar beet vol.64, pp.1, 2015, https://doi.org/10.1111/ppa.12239
  19. Generation and evaluation of movement protein-specific single-chain antibodies for delaying symptoms ofTomato spotted wilt virusinfection in tobacco vol.57, pp.5, 2008, https://doi.org/10.1111/j.1365-3059.2008.01863.x
  20. RNAi-mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease vol.12, pp.1, 2011, https://doi.org/10.1111/j.1364-3703.2010.00650.x
  21. Double-Virus Resistance of Transgenic Oriental Melon Conferred by Untranslatable Chimeric Construct Carrying Partial Coat Protein Genes of Two Viruses vol.94, pp.11, 2010, https://doi.org/10.1094/PDIS-11-09-0742
  22. RNase If -treated quantitative PCR for dsRNA quantitation of RNAi trait in genetically modified crops vol.18, pp.1, 2018, https://doi.org/10.1186/s12896-018-0413-6