DOI QR코드

DOI QR Code

염화마그네슘 존재 하의 비스(1,10-페난트롤린) 구리(II)-도데실황산나트륨 용액의 전기화학

Electrochemistry of bis(1,10-phenanthroline)copper(II)-sodium dodecyl sulfate solution in the presence of MgCl2

  • 고영춘 (대불대학교 나노화학환경공학과)
  • Ko, Young Chun (Department of Nano-Chemical/Environmental Engineering)
  • 투고 : 2007.08.07
  • 심사 : 2007.10.31
  • 발행 : 2007.12.25

초록

염화마그네슘 존재하의 비스(1,10-페난트롤린)구리(II) $(Cu(ph){_2}^{2+})$-도데실황산나트륨(SDS)의 전기화학적 거동들이 고찰되었다. $Mg^{2+}$의 첨가에 의한 SDS의 용액에서 $Cu(ph){_2}^{2+}$$E_{pa}$$E_{1/2}$ 값은 양의 값으로 이동했다. 1.0 mM $Cu(ph){_2}^{2+}$의 27 mM $MgCl_2$을 포함한 100mM NaCl 용액에서, ${\Delta}E_p$ 대 -log[SDS]로 도시한 그림에서 두 선의 교차점을 임계미셀농도로 결정하였다 (순환 전압전류법에 의해 3.48 mM SDS; 표면 장력법에 의해 3.34 mM SDS). $Cu(ph){_2}^{2+}$의 용액에 $Mg^{2+}$가 첨가되었을 때 유리탄소전극에서의 이중층의 거리가 감소했고 미셀형성이 지연되었다.

Electrochemistry of 1.0 mM bis(1,10-phenanthroline)copper(II) $(Cu(ph){_2}^{2+})$ in 100 mM NaCl solution including 27 mM $MgCl_2$ with and without sodium dodecyl sulfate (SDS) is studied. In the presence of SDS, $E_{pa}$ and $E_{1/2}$ of $Cu(ph){_2}^{2+}$ by adding $Mg^{2+}$ shifts to a positive direction compared to the SDS free. The intersection of two lines on ${\Delta}E_p$ vs -log[SDS] plot is determined as a critical micelle concentration (CMC). When $Mg^{2+}$ is added, it seems that the double layer became more compact. And the formation of micelles is retarded.

키워드

참고문헌

  1. S. Hattori, Y. Wada, S. Yanagida and S. Fukuzumi, J. Am. Chem. Soc., 127, 9648-9654 (2005) https://doi.org/10.1021/ja0506814
  2. S.-J. Liy, C. -H. Huang and C.-C. Chang, Mat. Chem. and Phy., 82, 551-556 (2003). https://doi.org/10.1016/S0254-0584(03)00210-4
  3. C. Wang, E. Wyn-Jones, J. Sidhu and K. C. Tam, Langmuir, 23, 1635-1639 (2007) https://doi.org/10.1021/la0625897
  4. D. Mitra, I. Chakraborty, S. C. Bhattacharya and S. P. Moulik, Langmuir, 23, 3049-3061 (2007) https://doi.org/10.1021/la062830h
  5. M. S. Bakshi, A. Kaura, J. D. Miller and V. K. Paruchuri, J. Coll. Interf. Sci., 278, 472-477 (2004) https://doi.org/10.1016/j.jcis.2004.06.022
  6. G. Caminati, N. J. Turro and D. A. Tomalia, J. Am. Chem. Soc., 112, 8515-8522 (1990) https://doi.org/10.1021/ja00179a041
  7. S. Yamada, K. Hojo, H. Yoshimura, and K. Ishikawa, J. of Biochem., 117, 1162-1169 (1995) https://doi.org/10.1093/oxfordjournals.jbchem.a124839
  8. Y. C. Ko and K. H. Chung, Anal. Sci. & Tech., 11, 151- 155 (1998)
  9. A. Jaramillo, A. Marino and A. Brajter-Toth, Anal. Chem. 65, 3441-3446 (1993) https://doi.org/10.1021/ac00071a018
  10. C.-W. Lee and F. C. Anson, Inorg. Chem. 23, 837-844 (1984) https://doi.org/10.1021/ic00175a009
  11. C. -W. Lee and F. C. Anson, J. Phys. Chem. 87, 3360- 3362 (1983) https://doi.org/10.1021/j100240a036
  12. B. Lindman and H. Wennerstrm, Top. Curr. Chem., 87, 1-83 (1980) https://doi.org/10.1007/BFb0048488
  13. Y. C. Ko, J. Ree and K. H. Chung, Bull. Korean. Chem. Soc., 18, 113-116 (1997) https://doi.org/10.1007/BF02707207
  14. Y. C. Ko, J. of Dabul University, 4, 545-551 (1998)