DOI QR코드

DOI QR Code

The Replicon Initiation Burst Released by Reoxygenation of Hypoxic T24 Cells is Accompanied by Changes of MCM2 and Cdc7

  • Martin, Leenus (Interfakultares Institut fur Biochemie der Universitat Tubingen)
  • Published : 2007.09.30

Abstract

Although MCM2 is obviously important for the initiation of eukaryotic DNA replication, its role in $O_2$ dependent regulation of replicon initiation is poorly understood. In this report, I analysed the changes of MCM2 during the transition from hypoxically suppressed replicon initiation to the burst of initiation triggered by reoxygenation in T24 cells. A high level of chromatin bound and nucleosolic MCM2 was found under the hypoxic replicon arrest. In contrast low cytosolic MCM2 was noticed. Recovery of $O_2$ induced phosphorylation and diminution of chromatin bound MCM2, whereas cytosolic MCM2 increased. The level of chromatin bound Cdc7 did not change significantly upon reoxygenation. However, after reoxygenation, significant phosphorylation of Cdc7 and an increase of coimmunoprecipitation with its substrate (MCM2) were observed. This provides a hint that reoxygenation may promote the kinase activity of Cdc7. These changes might be the critical factors in $O_2$ dependent regulation of replicon initiation. Moreover, phosphorylation of Cdc7 by Cdk2 can be observed in vitro, but seems to fail to regulate the level of chromatin bound Cdc7 as well as the changes of MCM2 in response to reoxygenation of hypoxically suppressed cells.

Keywords

References

  1. Angus, S. P., Wheeler, L. J., Ranmal, S. A., Zhang, X., Markey, M. P., Mathews, C. K. and Knudsen, E. S. (2002) Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J. Biol. Chem. 277, 44376-44384. https://doi.org/10.1074/jbc.M205911200
  2. Bell, S. P. and Dutta, A. (2002) DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333-374. https://doi.org/10.1146/annurev.biochem.71.110601.135425
  3. Brown, G. W. and Kelly, T. J. (1998) Purification of Hsk1, a minichromosome maintenance protein kinase from fission yeast. J. Biol. Chem. 273, 22083-22090. https://doi.org/10.1074/jbc.273.34.22083
  4. Choi, K. S., Bae, M. K., Jeong, J. W., Moon, H. E. and Kim, K. W. (2003a) Hypoxia-induced angiogenesis during carcinogenesis. J. Biochem. Mol. Biol. 36, 120-127. https://doi.org/10.5483/BMBRep.2003.36.1.120
  5. Choi, Y. H., Kang, H. S. and Yoo, M. A. (2003b) Suppression of human prostate cancer cell growth by beta-lapachone via down-regulation of pRB phosphorylation and induction of Cdk inhibitor p21(WAF1/CIP1). J. Biochem. Mol. Biol. 36, 223-229. https://doi.org/10.5483/BMBRep.2003.36.2.223
  6. Chong, J. P., Mahbubani, H. M., Khoo, C. Y. and Blow, J. J. (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418-421. https://doi.org/10.1038/375418a0
  7. Dreier, T., Scheidtmann, K. H. and Probst, H. (1993) Synchronous replication of SV 40 DNA in virus infected TC 7 cells induced by transient hypoxia. FEBS Lett. 336, 445-451. https://doi.org/10.1016/0014-5793(93)80853-M
  8. Dutta, A. and Bell, S. P. (1997) Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell Dev. Biol. 13, 293-332. https://doi.org/10.1146/annurev.cellbio.13.1.293
  9. Fujita, M., Kiyono, T., Hayashi, Y. and Ishibashi., M. (1996) hCDC47, a human member of the MCM family. J. Biol. Chem. 271, 4349-4354. https://doi.org/10.1074/jbc.271.8.4349
  10. Gekeler, V., Epple, J., Kleymann, G. and Probst, H. (1993) Selective and synchronous activation of early-S-phase replicons of Ehrlich ascites cells. Mol. Cell Biol. 13, 5020-5033. https://doi.org/10.1128/MCB.13.8.5020
  11. Hisao Masai, K. I. A. (2002) Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J. Cell. Physiol. 190, 287-296. https://doi.org/10.1002/jcp.10070
  12. Ishimi, Y. (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508-24513. https://doi.org/10.1074/jbc.272.39.24508
  13. Ishimi, Y., Komamura-Kohno, Y., Arai, K. I. and Masai, H. (2001) Biochemical activities associated with mouse Mcm2 protein. J. Biol. Chem. 276, 42744-42752. https://doi.org/10.1074/jbc.M106861200
  14. Ishimi, Y., Komamura, Y., You, Z. and Kimura, H. (1998) Biochemical function of mouse minichromosome maintenance 2 protein. J. Biol. Chem. 273, 8369-8375. https://doi.org/10.1074/jbc.273.14.8369
  15. Jares, P. and Blow, J. J. (2000) Xenopus Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev. 14, 1528-1540.
  16. Kelly, T. J. and Brown, G. W. (2000) Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829-880. https://doi.org/10.1146/annurev.biochem.69.1.829
  17. Kimura, H., Ohtomo, T., Yamaguchi, M., Ishii, A. and Sugimoto, K. (1996) Mouse MCM proteins: complex formation and transportation to the nucleus. Genes Cells 1, 977-993. https://doi.org/10.1046/j.1365-2443.1996.840284.x
  18. Kitada, K., Johnston, L. H., Sugino, T. and Sugino, A. (1992) Temperature-sensitive cdc 7 mutations of saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G(1)/S cell cycle transition. Genetics 131, 21-29.
  19. Kumagai, H., Sato, N., Yamada, M., Mahony, D., Seghezzi, W., Lees, E., Arai, K. I. and Masai, H. (1999) A novel growth-and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells. Mol. Cell. Biol. 19, 5083-5095. https://doi.org/10.1128/MCB.19.7.5083
  20. Labib, K., Tercero, J., Eacute, A. and Diffley, J. F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643-1647. https://doi.org/10.1126/science.288.5471.1643
  21. Lee, J. K. and Hurwitz, J. (2000) Isolation and characterization of various complexes of the minichromosome maintenance proteins of schizosaccharomyces pombe. J. Biol. Chem. 275, 18871-18878. https://doi.org/10.1074/jbc.M001118200
  22. Lei, M., Kawasaki, Y., Young, M. R., Kihara, M., Sugino, A. and Tye, B. K. (1997) Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365-3374. https://doi.org/10.1101/gad.11.24.3365
  23. Lei, M. and Tye, B. K. (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell. Sci. 114, 1447-1454.
  24. Masai, H. and Arai, K. I. (2000) Dbf4 motifs: conserved motifs in activation subunits for Cdc7 kinases essential for S-phase. Biochem. Biophys. Res. Commun. 275, 228-232. https://doi.org/10.1006/bbrc.2000.3281
  25. Masai, H., Matsui, E., You, Z., Ishimi, Y., Tamai, K. and Arai, K. I. (2000) Human Cdc7 related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a critical threonine residue of Cdc7 by Cdks. J. Biol. Chem. 275, 29042-29052 https://doi.org/10.1074/jbc.M002713200
  26. Montagnoli, A., Valsasina, B., Brotherton, D., Troiani, S., Rainoldi, S., Tenca, P., Molinari, A. and Santocanale, C. (2006.) Identification of Mcm2 phosphorylation sites by S-phase regulating kinases. J. Biol. Chem. 281, 10281-10290. https://doi.org/10.1074/jbc.M512921200
  27. Ogino, K., Takeda, T., Matsui, E., Iiyama, H., Taniyama, C., Arai, K. I. and Masai, H. (2001) Bipartite binding of a kinase activator activates Cdc7-related kinase essential for S phase. J. Biol. Chem. 276, 31376-31387. https://doi.org/10.1074/jbc.M102197200
  28. Ohtani, K., Tsujimoto, A., Ikeda, M. and Nakamura, M. (1998) Regulation of cell growth-dependent expression of mammalian CDC6 gene by the cell cycle transcription factor E2F. Oncogene 17, 1777-1785. https://doi.org/10.1038/sj.onc.1202105
  29. Oshiro, G., Owens, J. C., Shellman, Y., Sclafani, R. A. and Li, J. J. (1999) Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol. Cell. Biol. 19, 4888-4896. https://doi.org/10.1128/MCB.19.7.4888
  30. Probst, G., Riedinger, H. J., Martin, P., Engelcke, M. and Probst, H. (1999) Fast control of DNA replication in response to hypoxia and to inhibited protein synthesis in CCRF-CEM and HeLa cells. Biol. Chem. 380, 1371-1382. https://doi.org/10.1515/BC.1999.177
  31. Probst, H. and Gekeler, V. (1980) Reversible inhibition of replicon initiation in Ehrlich ascites cells by anaerobiosis. Biochem. Biophys. Res. Commun. 94, 55-60. https://doi.org/10.1016/S0006-291X(80)80186-0
  32. Probst, H., Gekeler, V. and Helftenbein, E. (1984) Oxygen dependence of nuclear DNA replication in Ehrlich ascites cells. Exp. Cell Res. 154, 327-341. https://doi.org/10.1016/0014-4827(84)90157-5
  33. Probst, H., Hofstaetter, T., Jenke, H. S., Gentner, P. R. and Muller-Scholz, D. (1983) Metabolism and non-random occurrence of nonnascent short chains in the DNA of Ehrlich ascites cells. Biochim. Biophys. Acta 740, 200-211. https://doi.org/10.1016/0167-4781(83)90078-7
  34. Probst, H., Schiffer, H., Gekeler, V., Kienzle-Pfeilsticker, H., Stropp, U., Stotzer, K. E. and Frenzel-Stotzer, I. (1988) Oxygen dependent regulation of DNA synthesis and growth of Ehrlich ascites tumor cells in vitro and in vivo. Cancer Res. 48, 2053-2060.
  35. Probst, H., Schiffer, H., Gekeler, V. and Scheffler, K. (1989) Oxygen dependent regulation of mammalian ribonucleotide reductase in vivo and possible significance for replicon initiation. Biochem. Biophys. Res. Commun. 163, 334-340. https://doi.org/10.1016/0006-291X(89)92140-2
  36. Riedinger, H. J., van Betteraey-Nikoleit, M. and Probst. H. (2002) Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins. Eur. J. Biochem. 269, 2383-2393. https://doi.org/10.1046/j.1432-1033.2002.02902.x
  37. Riedinger, H. J., Gekeler, V. and Probst, H. (1992) Reversible shutdown of replicon initiation by transient hypoxia in Ehrlich ascites cells. Dependence of initiation on short-lived protein. Eur. J. Biochem. 210, 389-398. https://doi.org/10.1111/j.1432-1033.1992.tb17433.x
  38. Sato, N., Sato, M., Nakayama, M., Saitoh, R., Arai, K. and Masai, H. (2003) Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex. Genes to Cells 8, 451-463. https://doi.org/10.1046/j.1365-2443.2003.00647.x
  39. Sclafani, R. A., Patterson, M., Rosamond, J. and Fangman, W. L. (1988) Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Mol. Cell. Biol. 8, 293-300. https://doi.org/10.1128/MCB.8.1.293
  40. Shechter, D. and Gautier, J. (2004) MCM proteins and checkpoint kinases get together at the fork. Proc. Natl. Acad. Sci. USA 101, 10845-10846. https://doi.org/10.1073/pnas.0404143101
  41. Stabenow, D., Probst, H. and Betteraey-Nikoleit, M. (2005) Cdk2 activity is dispensable for triggering replicon initiation after transient hypoxia in T24 cells. FEBS J. 272, 5623-5634. https://doi.org/10.1111/j.1742-4658.2005.04957.x
  42. Takeda, T., Ogino, K., Matsui, E., Cho, M. K., Kumagai, H., Miyake, T., Arai, K. I. and Masai, H. (1999) A fission yeast gene, him1+/dfp1+, encoding a regulatory subunit for Hsk1 kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Mol. Cell. Biol. 19, 5535-5547. https://doi.org/10.1128/MCB.19.8.5535
  43. Todorov, I. T., Attaran, A. and Kearsey, S. E. (1995) BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 129, 1433-1445. https://doi.org/10.1083/jcb.129.6.1433
  44. Tye, B. K. (1999) MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649-686. https://doi.org/10.1146/annurev.biochem.68.1.649
  45. van Betteraey-Nikoleit, M., Eisele, K. H., Stabenow, D. and Probst, H. (2003) Analyzing changes of chromatin-bound replication proteins occurring in response to and after release from a hypoxic block of replicon initiation in T24 cells. Eur. J. Biochem. 270, 3880-3890. https://doi.org/10.1046/j.1432-1033.2003.03769.x
  46. Wang, X., Carstens, E. B. and Feng, Q. (2006) Characterization of Choristoneura fumiferana genes of the sixth subunit of the origin recognition complex: CfORC6. J. Biochem. Mol. Biol. 39, 782-787. https://doi.org/10.5483/BMBRep.2006.39.6.782
  47. Wessel, D. and Flugge, U. I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141-143. https://doi.org/10.1016/0003-2697(84)90782-6
  48. Yamashita, N., Kim, J. M., Koiwai, O., Arai, K. I. and Masai, H. (2005) Functional analyses of mouse ASK, an activation subunit for Cdc7 kinase, using conditional ASK knockout ES cells. Genes Cells 10, 551-563. https://doi.org/10.1111/j.1365-2443.2005.00857.x
  49. Yan, H., Merchant, A. M. and Tye., B. K. (1993) Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7, 2149-2160. https://doi.org/10.1101/gad.7.11.2149
  50. Yanow, S. K., Gold, D. A., Yoo, H. Y. and Dunphy, W. G. (2003) Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J. Biol. Chem. 278, 41083-41092. https://doi.org/10.1074/jbc.M307144200

Cited by

  1. Oxygen regulates molecular mechanisms of cancer progression and metastasis vol.33, pp.1, 2014, https://doi.org/10.1007/s10555-013-9464-2