References
- Angus, S. P., Wheeler, L. J., Ranmal, S. A., Zhang, X., Markey, M. P., Mathews, C. K. and Knudsen, E. S. (2002) Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J. Biol. Chem. 277, 44376-44384. https://doi.org/10.1074/jbc.M205911200
- Bell, S. P. and Dutta, A. (2002) DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333-374. https://doi.org/10.1146/annurev.biochem.71.110601.135425
- Brown, G. W. and Kelly, T. J. (1998) Purification of Hsk1, a minichromosome maintenance protein kinase from fission yeast. J. Biol. Chem. 273, 22083-22090. https://doi.org/10.1074/jbc.273.34.22083
- Choi, K. S., Bae, M. K., Jeong, J. W., Moon, H. E. and Kim, K. W. (2003a) Hypoxia-induced angiogenesis during carcinogenesis. J. Biochem. Mol. Biol. 36, 120-127. https://doi.org/10.5483/BMBRep.2003.36.1.120
- Choi, Y. H., Kang, H. S. and Yoo, M. A. (2003b) Suppression of human prostate cancer cell growth by beta-lapachone via down-regulation of pRB phosphorylation and induction of Cdk inhibitor p21(WAF1/CIP1). J. Biochem. Mol. Biol. 36, 223-229. https://doi.org/10.5483/BMBRep.2003.36.2.223
- Chong, J. P., Mahbubani, H. M., Khoo, C. Y. and Blow, J. J. (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418-421. https://doi.org/10.1038/375418a0
- Dreier, T., Scheidtmann, K. H. and Probst, H. (1993) Synchronous replication of SV 40 DNA in virus infected TC 7 cells induced by transient hypoxia. FEBS Lett. 336, 445-451. https://doi.org/10.1016/0014-5793(93)80853-M
- Dutta, A. and Bell, S. P. (1997) Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell Dev. Biol. 13, 293-332. https://doi.org/10.1146/annurev.cellbio.13.1.293
- Fujita, M., Kiyono, T., Hayashi, Y. and Ishibashi., M. (1996) hCDC47, a human member of the MCM family. J. Biol. Chem. 271, 4349-4354. https://doi.org/10.1074/jbc.271.8.4349
- Gekeler, V., Epple, J., Kleymann, G. and Probst, H. (1993) Selective and synchronous activation of early-S-phase replicons of Ehrlich ascites cells. Mol. Cell Biol. 13, 5020-5033. https://doi.org/10.1128/MCB.13.8.5020
- Hisao Masai, K. I. A. (2002) Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J. Cell. Physiol. 190, 287-296. https://doi.org/10.1002/jcp.10070
- Ishimi, Y. (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508-24513. https://doi.org/10.1074/jbc.272.39.24508
- Ishimi, Y., Komamura-Kohno, Y., Arai, K. I. and Masai, H. (2001) Biochemical activities associated with mouse Mcm2 protein. J. Biol. Chem. 276, 42744-42752. https://doi.org/10.1074/jbc.M106861200
- Ishimi, Y., Komamura, Y., You, Z. and Kimura, H. (1998) Biochemical function of mouse minichromosome maintenance 2 protein. J. Biol. Chem. 273, 8369-8375. https://doi.org/10.1074/jbc.273.14.8369
- Jares, P. and Blow, J. J. (2000) Xenopus Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev. 14, 1528-1540.
- Kelly, T. J. and Brown, G. W. (2000) Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829-880. https://doi.org/10.1146/annurev.biochem.69.1.829
- Kimura, H., Ohtomo, T., Yamaguchi, M., Ishii, A. and Sugimoto, K. (1996) Mouse MCM proteins: complex formation and transportation to the nucleus. Genes Cells 1, 977-993. https://doi.org/10.1046/j.1365-2443.1996.840284.x
- Kitada, K., Johnston, L. H., Sugino, T. and Sugino, A. (1992) Temperature-sensitive cdc 7 mutations of saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G(1)/S cell cycle transition. Genetics 131, 21-29.
- Kumagai, H., Sato, N., Yamada, M., Mahony, D., Seghezzi, W., Lees, E., Arai, K. I. and Masai, H. (1999) A novel growth-and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells. Mol. Cell. Biol. 19, 5083-5095. https://doi.org/10.1128/MCB.19.7.5083
- Labib, K., Tercero, J., Eacute, A. and Diffley, J. F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643-1647. https://doi.org/10.1126/science.288.5471.1643
- Lee, J. K. and Hurwitz, J. (2000) Isolation and characterization of various complexes of the minichromosome maintenance proteins of schizosaccharomyces pombe. J. Biol. Chem. 275, 18871-18878. https://doi.org/10.1074/jbc.M001118200
- Lei, M., Kawasaki, Y., Young, M. R., Kihara, M., Sugino, A. and Tye, B. K. (1997) Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365-3374. https://doi.org/10.1101/gad.11.24.3365
- Lei, M. and Tye, B. K. (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell. Sci. 114, 1447-1454.
- Masai, H. and Arai, K. I. (2000) Dbf4 motifs: conserved motifs in activation subunits for Cdc7 kinases essential for S-phase. Biochem. Biophys. Res. Commun. 275, 228-232. https://doi.org/10.1006/bbrc.2000.3281
- Masai, H., Matsui, E., You, Z., Ishimi, Y., Tamai, K. and Arai, K. I. (2000) Human Cdc7 related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a critical threonine residue of Cdc7 by Cdks. J. Biol. Chem. 275, 29042-29052 https://doi.org/10.1074/jbc.M002713200
- Montagnoli, A., Valsasina, B., Brotherton, D., Troiani, S., Rainoldi, S., Tenca, P., Molinari, A. and Santocanale, C. (2006.) Identification of Mcm2 phosphorylation sites by S-phase regulating kinases. J. Biol. Chem. 281, 10281-10290. https://doi.org/10.1074/jbc.M512921200
- Ogino, K., Takeda, T., Matsui, E., Iiyama, H., Taniyama, C., Arai, K. I. and Masai, H. (2001) Bipartite binding of a kinase activator activates Cdc7-related kinase essential for S phase. J. Biol. Chem. 276, 31376-31387. https://doi.org/10.1074/jbc.M102197200
- Ohtani, K., Tsujimoto, A., Ikeda, M. and Nakamura, M. (1998) Regulation of cell growth-dependent expression of mammalian CDC6 gene by the cell cycle transcription factor E2F. Oncogene 17, 1777-1785. https://doi.org/10.1038/sj.onc.1202105
- Oshiro, G., Owens, J. C., Shellman, Y., Sclafani, R. A. and Li, J. J. (1999) Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol. Cell. Biol. 19, 4888-4896. https://doi.org/10.1128/MCB.19.7.4888
- Probst, G., Riedinger, H. J., Martin, P., Engelcke, M. and Probst, H. (1999) Fast control of DNA replication in response to hypoxia and to inhibited protein synthesis in CCRF-CEM and HeLa cells. Biol. Chem. 380, 1371-1382. https://doi.org/10.1515/BC.1999.177
- Probst, H. and Gekeler, V. (1980) Reversible inhibition of replicon initiation in Ehrlich ascites cells by anaerobiosis. Biochem. Biophys. Res. Commun. 94, 55-60. https://doi.org/10.1016/S0006-291X(80)80186-0
- Probst, H., Gekeler, V. and Helftenbein, E. (1984) Oxygen dependence of nuclear DNA replication in Ehrlich ascites cells. Exp. Cell Res. 154, 327-341. https://doi.org/10.1016/0014-4827(84)90157-5
- Probst, H., Hofstaetter, T., Jenke, H. S., Gentner, P. R. and Muller-Scholz, D. (1983) Metabolism and non-random occurrence of nonnascent short chains in the DNA of Ehrlich ascites cells. Biochim. Biophys. Acta 740, 200-211. https://doi.org/10.1016/0167-4781(83)90078-7
- Probst, H., Schiffer, H., Gekeler, V., Kienzle-Pfeilsticker, H., Stropp, U., Stotzer, K. E. and Frenzel-Stotzer, I. (1988) Oxygen dependent regulation of DNA synthesis and growth of Ehrlich ascites tumor cells in vitro and in vivo. Cancer Res. 48, 2053-2060.
- Probst, H., Schiffer, H., Gekeler, V. and Scheffler, K. (1989) Oxygen dependent regulation of mammalian ribonucleotide reductase in vivo and possible significance for replicon initiation. Biochem. Biophys. Res. Commun. 163, 334-340. https://doi.org/10.1016/0006-291X(89)92140-2
- Riedinger, H. J., van Betteraey-Nikoleit, M. and Probst. H. (2002) Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins. Eur. J. Biochem. 269, 2383-2393. https://doi.org/10.1046/j.1432-1033.2002.02902.x
- Riedinger, H. J., Gekeler, V. and Probst, H. (1992) Reversible shutdown of replicon initiation by transient hypoxia in Ehrlich ascites cells. Dependence of initiation on short-lived protein. Eur. J. Biochem. 210, 389-398. https://doi.org/10.1111/j.1432-1033.1992.tb17433.x
- Sato, N., Sato, M., Nakayama, M., Saitoh, R., Arai, K. and Masai, H. (2003) Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex. Genes to Cells 8, 451-463. https://doi.org/10.1046/j.1365-2443.2003.00647.x
- Sclafani, R. A., Patterson, M., Rosamond, J. and Fangman, W. L. (1988) Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Mol. Cell. Biol. 8, 293-300. https://doi.org/10.1128/MCB.8.1.293
- Shechter, D. and Gautier, J. (2004) MCM proteins and checkpoint kinases get together at the fork. Proc. Natl. Acad. Sci. USA 101, 10845-10846. https://doi.org/10.1073/pnas.0404143101
- Stabenow, D., Probst, H. and Betteraey-Nikoleit, M. (2005) Cdk2 activity is dispensable for triggering replicon initiation after transient hypoxia in T24 cells. FEBS J. 272, 5623-5634. https://doi.org/10.1111/j.1742-4658.2005.04957.x
- Takeda, T., Ogino, K., Matsui, E., Cho, M. K., Kumagai, H., Miyake, T., Arai, K. I. and Masai, H. (1999) A fission yeast gene, him1+/dfp1+, encoding a regulatory subunit for Hsk1 kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Mol. Cell. Biol. 19, 5535-5547. https://doi.org/10.1128/MCB.19.8.5535
- Todorov, I. T., Attaran, A. and Kearsey, S. E. (1995) BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 129, 1433-1445. https://doi.org/10.1083/jcb.129.6.1433
- Tye, B. K. (1999) MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649-686. https://doi.org/10.1146/annurev.biochem.68.1.649
- van Betteraey-Nikoleit, M., Eisele, K. H., Stabenow, D. and Probst, H. (2003) Analyzing changes of chromatin-bound replication proteins occurring in response to and after release from a hypoxic block of replicon initiation in T24 cells. Eur. J. Biochem. 270, 3880-3890. https://doi.org/10.1046/j.1432-1033.2003.03769.x
- Wang, X., Carstens, E. B. and Feng, Q. (2006) Characterization of Choristoneura fumiferana genes of the sixth subunit of the origin recognition complex: CfORC6. J. Biochem. Mol. Biol. 39, 782-787. https://doi.org/10.5483/BMBRep.2006.39.6.782
- Wessel, D. and Flugge, U. I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141-143. https://doi.org/10.1016/0003-2697(84)90782-6
- Yamashita, N., Kim, J. M., Koiwai, O., Arai, K. I. and Masai, H. (2005) Functional analyses of mouse ASK, an activation subunit for Cdc7 kinase, using conditional ASK knockout ES cells. Genes Cells 10, 551-563. https://doi.org/10.1111/j.1365-2443.2005.00857.x
- Yan, H., Merchant, A. M. and Tye., B. K. (1993) Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7, 2149-2160. https://doi.org/10.1101/gad.7.11.2149
- Yanow, S. K., Gold, D. A., Yoo, H. Y. and Dunphy, W. G. (2003) Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J. Biol. Chem. 278, 41083-41092. https://doi.org/10.1074/jbc.M307144200
Cited by
- Oxygen regulates molecular mechanisms of cancer progression and metastasis vol.33, pp.1, 2014, https://doi.org/10.1007/s10555-013-9464-2