알지네이트 비드와 캡슐에서의 납 이온의 흡착거동

Adsorption Behavior of Pb2+ Ions on Alginate Beads and Capsules

  • 신은우 (울산대학교 생명화학공학부) ;
  • ;
  • 유익근 (울산대학교 생명화학공학부)
  • Shin, Eun Woo (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Thuong, Nguyen Thi Lien (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 투고 : 2006.09.01
  • 심사 : 2006.09.27
  • 발행 : 2007.04.30

초록

칼슘 이온에 의해 젤화되는 알지네이트를 내부가 고상인 비드와 내부가 액상인 캡슐 형태로 각각 만들어 납이온 흡착 특성을 비교하여 보았다. 흡착 키네틱과 흡착 등온선 분석을 통해 칼슘-알지네이트 비드와 캡슐의 흡착 특성 차이를 pH 및 경화 시간에 따른 변화, 흡착시 칼슘 이온 방출량의 모니터링을 통해 검토하였다. 비드와 캡슐의 구조적 차이에 상관없이 두 흡착제 모두 표면착화(surface complexation)와 이온교환(ion exchange) 메커니즘에 의해 납 이온을 흡착하였고, 흡착량에 상관없이 두 메커니즘 간의 비율은 유사하였다. 납이온 흡착에 대한 pH 의존성은 비드와 캡슐이 유사하였으며, 이는 두 흡착제에 존재하는 표면 작용기가 유사함을 의미한다. 반면에 흡착 키네틱 분석에서는 캡슐에 비해 비드에서의 납이온 흡착 속도가 느렸으며, 흡착 등온선 분석에서 얻은 납이온의 최대 흡착량($Q_{max}$)은 알지네 이트 비드가 캡슐의 약 49% 정도로 나타났다. 이러한 납이온 흡착 거동의 차이는 비드와 캡슐 간의 구조적 차이에 기인한 것으로, 알지네이트 비드는 확산 저항에 의해 상대적으로 느린 흡착 속도 및 단위 무게당 적은 흡착량을 보이는 것으로 판단된다.

The adsorption behavior of $Pb^{2+}$ was compared between calcium alginate beads and capsules, which have different structures of alginate-gel core beads and liquid core alginate-membrane capsules, respectively. In terms of adsorption kinetics and isotherms, adsorption characteristics depending on pH and hardening time were compared for both adsorbents and also released calcium ion during the adsorption process was monitored. The adsorption of $Pb^{2+}$ on both adsorbents was caused by surface complexation and ion exchange mechanisms, both of which have similar effects on adsorption process regardless of the amount of adsorbed $Pb^{2+}$. The dependence of $Pb^{2+}$ adsorption upon pH was also similar for both adsorbents indicating the existence of similar functional groups on the surface of adsorbents. However, a different $Pb^{2+}$ adsorption behavior was observed considering the adsorption kinetics. The adsorption kinetic of $Pb^{2+}$ on alginate beads was slower than on alginate capsules and the maximum adsorption loading ($Q_{max}$) onto alginate beads was also less than onto alginate capsules by 49%. This drawback of alginate beads compared to capsules were ascribed to a diffusion limitation due to solid gel-core structure of alginate beads.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. Jang, L. K., Nguyen, D. and Geesey, G. G., 'Selectivity of Alginate Gel for Cu over Zn when Acidic Conditions Prevail,' Water Res., 33(12), 2817-2825(1999) https://doi.org/10.1016/S0043-1354(99)00076-7
  2. Chen, D., Lewandowski, Z., Roe, F. and Surapaneni, P., 'Diffusivity of $Cu^{2+}$ in Calcium Alginate Gel Beads,' Biotechnol. Bioeng., 41(6), 755-760(1993) https://doi.org/10.1002/bit.260410710
  3. Pandey, A. K., Pandey, S. D., Misra, V. and Devi, S., 'Role of Humic Acid Entrapped Calcium Alginate Beads in Removal of Heavy Metals,' J. Hazard. Mater., B98(1-3), 177-181(2003)
  4. Shilpa, A., Agrawal, S. S. and Ray, A. R., 'Controlled Delivery of Drugs from Alginate Matrix,' J. Macromol. Sci. Part C., 43(2), 187-221(2003) https://doi.org/10.1081/MC-120020160
  5. Xue, H.B., Stumm, W. and Sigg, L., 'Binding of Heavy Metals to Algal Surfaces,' Water Res., 22(7), 917-926(1988) https://doi.org/10.1016/0043-1354(88)90029-2
  6. Cirst, R. H., Martin, J. R., Carr, D., Watson, J. R., Clarke, H. J. and Crist, D. R., 'Interaction of Metals and Protons with Algae 4. Ion Exchange vs Adsorption Models and a Reassessment of Scatchard Plots; Ion-Exchange Rates and Equilibria Compared with Calcium Alginate,' Environ. Sci. Technol., 28(11), 1859-1866(1994) https://doi.org/10.1021/es00060a016
  7. Konishi, Y., Asai, S., Shimaoka, J., Miyata, M. and Kawamura, T., 'Recovery of Neodymium and Ytterbium by Biopolymer Gel Particles of Alginic Acid,' Ind. Eng. Chem. Res., 31(10), 2303-2311 (1992) https://doi.org/10.1021/ie00010a008
  8. Lazaro, N., Sevilla, A. L., Morales, S. and Marques, A. M., 'Heavy Metal Biosorption by Gellan Gum Gel Beads,' Water Res., 37(9), 2118-2126(2003) https://doi.org/10.1016/S0043-1354(02)00575-4
  9. Chen, J., Tendeyong, F. and Yiacoumi, S., 'Equilibrium and Kinetic Studies of Copper Ion Uptake by Calcium Alginate,' Environ. Sci. Technol., 31(5), 1433-1439(1997) https://doi.org/10.1021/es9606790
  10. Yoo, I. K., Seong, G. H., Chang, H. N. and Park, J. K., 'Encapsulation of Lactobacillus casei Cells in Liquid-core Alginate Capsules for Lactic Acid Production,' Enzyme Microb. Tech. 19(6), 428-433(1996) https://doi.org/10.1016/S0141-0229(96)00016-6
  11. Chang, H. N., Seong, G. H., Yoo, I. K., Park, J. K. and Seo, J. H., 'Microencapsulation of Recombinant Saccharomyces cerevisiae Cells with Invertase Activity in Liquid-core Alginate Capsule,' Biotechnol. Bioeng. 51(2), 157-162(1996) https://doi.org/10.1002/(SICI)1097-0290(19960720)51:2<157::AID-BIT4>3.0.CO;2-I
  12. Koyama, K. and Seki, M., 'Evaluation of Mass-Transfer Characteristics in Alginate-Membrane Liquid-Core Capsules Prepared Using Polyethylene Glycol,' J. Biosci. Bioeng., 98(2), 114-121(2004) https://doi.org/10.1016/S1389-1723(04)70251-0
  13. Blandino, A., Macias, M. and Cantero, D., 'Formation of Calcium Alginate Gel Capsules: Influence of Sodium Alginate and CaCl2 Concentration on Gelation Kinetics,' J. Biosci. Bioeng., 88(6), 686-689(1999) https://doi.org/10.1016/S1389-1723(00)87103-0
  14. Chai, Y., Mei, L. H., Wu, G. L., Lin, D. Q. and Yao, S. J., 'Gelation Conditions and Transport Properties of Hollow Calcium Alginate Capsules,' Biotechnol. Bioeng. 87(2), 228-233(2004) https://doi.org/10.1002/bit.20144
  15. Cellesi, F., Weber, W., Fussenegger, M., Hubbell, J. A. and Tirelli, N., 'Towards a Fully Synthetic Substitute of Alginate: Optimization of a Thermal Gelation/Chemical Cross-Linking Scheme ('Tandem' Gelation) for the Production of Beads and Liquid-Core Capsules,' Biotechnol. Bioeng. 88(6), 740-749(2004) https://doi.org/10.1002/bit.20264
  16. Joen, C. and Holl, W. H., 'Chemical Modification of Chitosan and Equilibrium Study for Mercury Ion Removal,' Water Res., 37(19), 4770-4780(2003) https://doi.org/10.1016/S0043-1354(03)00431-7
  17. Shin, E. W. and Rowell, R. M., 'Cadmium Ion Sorption onto Lignocellulosic Biosorbent Modified by Sulfonation: the Origin of Sorption Capacity Improvement,' Chemosphere, 60(8), 1054-1061(2005) https://doi.org/10.1016/j.chemosphere.2005.01.017
  18. Park, H. G. and Chae, M. Y., 'Novel Type of Alginate Gel-based Adsorbents for Heavy Metal Removal,' J. Chem. Technol. Biot., 79(10), 1080-1083(2004) https://doi.org/10.1002/jctb.1080
  19. Crist, R. H., Martin, R. J. and Joseph, C., 'Uptake of Metals on Peat Moss: an Ion-Exchange Process,' Environ. Sci. Technol. 30(8), 2456-2461(1996) https://doi.org/10.1021/es950569d
  20. Crist, R. H., Oberholser, K. McQarrity, J., Crist, D. R., Johnson, J. K. and Brittsan, J., 'Interaction of Metals and Protons with Algae. 3. Marine Algae, with Emphasis on Lead and Aluminum,' Environ. Sci. Technol., 26(3), 496-502(1992) https://doi.org/10.1021/es00027a007
  21. Shin, E. W., Karthikeyan, K. G. and Tshabalala, M. A., 'Adsorption Mechanism of Cadmium on Juniper Bark and Wood,' Bioresource Technol., in press. 98(3), 588-594 (2007) https://doi.org/10.1016/j.biortech.2006.02.024
  22. Davis, T. A., Mucci, A. and Volesky, B., 'A Review of the Biochemistry of Heavy Metal Biosorption by Brown Agae,' Water Res., 37(18), 4311-4330(2003) https://doi.org/10.1016/S0043-1354(03)00293-8