열처리한 하수슬러지 메탄발효의 동력학적 해석

Kinetic Evaluation of Methane Fermentation of Thermally Disintegrated Wastewater Sludge

  • 박기영 (건국대학교 사회환경시스템공학과) ;
  • 이재우 (고려대학교 환경시스템공학과) ;
  • 정태학 (서울대학교 건설환경공학부)
  • Park, Ki Young (Department of Civil and Environmental System Engineering, Konkuk University) ;
  • Lee, Jae Woo (Department of Environmental Engineering, Korea University) ;
  • Chung, Tai Hak (Department of Civil, Urban and Geosystem Engineering, Seoul National University)
  • 투고 : 2007.10.22
  • 심사 : 2007.11.08
  • 발행 : 2007.11.30

초록

Waste activated sludge (WAS) was thermally pretreated to enhance hydrolysis and ultimately methane yield. Batch and semi-continuous anaerobic digestion were conducted to evaluate the performance of methane fermentation of the hydrolyzed sludge and to investigate the kinetics of sludge fermentation. Thermal pretreatment remarkably enhanced digestion performances particularly the methane fermentation with three times more methane production than before the pretreatment. Gas production and kinetic parameters in the semi-continuous anaerobic digestion were estimated using Chen Hashimoto model. The model simulation fitted well the experimental results and the model was shown to be suitable for evaluating the effects of disintegration of WAS in anaerobic digestion. Three parameters ($B_o$, K, and ${\mu}_m$) determined by model simulation were $0.0807L-CH_4/g-VS$, 0.453 and $0.154d^{-1}$ for control sludge, and $0.253L-CH_4/g-VS$, 0.835 and $0.218d^{-1}$ for thermally pretreated sludge, respectively.

키워드

참고문헌

  1. 정윤진, 허관용, 슬럿지 전처리 공정의 혐기성소화에 미치는 영향, 대한환경공학회지, 11, pp. 79-90 (1989)
  2. 홍영석, 배재호, 열전처리와 반응조 형태가 고형 유기물의 혐기성 처리에 미치는 영향, 상하수도학회지, 10, pp. 104-115 (1996)
  3. Andrews, J. F., Dynamic model of the anaerobic digestion process, Journal of Sanitary Engineering Division, ASCE, 95, pp. 95-117 (1969)
  4. APHA, AWWA and WEF, Standard Methods for the examination of water and wastewater, 19th edn., Washington D. C. (1995)
  5. Benefield, D. and Randall, C. W., Evaluations of a comprehensive kinetic model for the activated sludge process, J Water Pollut. Control Fed., 49, pp. 1636-1641 (1977)
  6. Bjerre, A. B., OLesen, A. B., Fernqvist, T., PLoger, A. and Schmidt, A. S., Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose, Biotechnol. Bioeng., 49, pp. 568-577 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<568::AID-BIT10>3.0.CO;2-6
  7. Chen, Y. R. and Hashimoto, A. G., Kinetics of methane fermentation, Biotechnol. Bioeng. Symp., 8, pp. 269-282 (1978)
  8. Chen, Y. R. and Hashimoto, A. G., Substrate utilization kinetic model for biological treatment processes, Biotechnol. Bioeng., 22, pp. 2081-2095 (1980) https://doi.org/10.1002/bit.260221008
  9. Chen, Y. R., Kinetic analysis of anaerobic. digestion of pig manure and its design implications, Agric. Wastes, pp. 65-81 (1983)
  10. Chynoweth, D. P., Ghosh, S. and Henry, M. P., Biogasification of blends of water hyacinth and domestic sludge, in Proc. of the 1981 International Gas Research Conf, Los Angeles, pp. 742-755 (1981)
  11. Daigger, G. T. and Grady, C. P. L., Jr, The dynamics of microbial growth on soluble substrates, A unifying theory, Water Res., 16, pp. 365-382 (1982) https://doi.org/10.1016/0043-1354(82)90159-2
  12. Eckenfelder, W. W., Jr, in Advances in Biological Waste Treatment, W. W. Eckenfelder Jr and J. McCabe, Eds, Pergamon, New York, pp. 277-289 (1963)
  13. Grady, C. P. L., Jr. and Williams, D. R., Effect of influent substrate concentration on the kinetics of natural microbial populations in the continuous culture, Water Res., 9, pp. 171-180 (1975) https://doi.org/10.1016/0043-1354(75)90006-8
  14. Grau, P., Dohanyos, M. and Chudoba, J., Kinetics of multicomponent substrate concentrate removal by activated sludge, Water Res., 9, pp. 637-642 (1975) https://doi.org/10.1016/0043-1354(75)90169-4
  15. Hashimoto, A. G., Methane from cattle waste: Effects of temperature, hydraulic retention time, and influent substrate concentration on kinetic parameter (K), Biotechnol. Bioeng., 24, pp. 2039-2052 (1982) https://doi.org/10.1002/bit.260240911
  16. Haug, R. T., Effect of thermal pretreatment on digestibilitty and dewaterability of organic sludges, J Water Pollut. Control Fed., 50, pp. 73-85 (1978)
  17. Hill, D. T., Design of digestion systems for maxium methane production, Trans. of the ASAE, 25, pp. 226-230 (1982) https://doi.org/10.13031/2013.33509
  18. Kirsch, E. J. and Sykes, R. M., Anaerobic digestion in biological waste treatment, in Progress in Industrial Microbiology, D. J. D. Hockenhull (ed.), London: J. and A. Churchill (1971)
  19. Lawrence, A. W. and McCarty, P. L., Kinetics of methane fermentation in anaerobic treatment, J Water Pollut. Control Fed., 41, pp. R1-R17, (1969)
  20. Li, Y. Y. and Noike, T., Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Sci. Tech., 26, pp. 857-866 (1992) https://doi.org/10.2166/wst.1992.0466
  21. Lo, K. V., Carson, W. M. and Jeffers, K., Computer-aided design program for biogas production from animal manure, p. 133 in Livestock Wastes: A Renewable Resource, St Joseph, Mich.: ASAE (1981)
  22. McKinney, R. E., Mathematics of complete mixing activated sludge, J of Sanitary Engineering Division, ASCE, 88, pp. 87-113 (1962)
  23. Noike, T., Endo, G., Chang, J. E., Yaguchi, J. I. and Matsumoto, J. I., Characteristics of carbohydrate degradation and the rate limiting step in anaerobic digestion, Biotechnol. Bioeng., 27, pp. 1482-1489 (1985) https://doi.org/10.1002/bit.260271013
  24. Song, J. J., Takeda, N. and Hiraoka, M., Anaerobic treatment of sewage sludge treated by catalytic wet oxidation process in upflow anaerobic sludge blanket reactors, Water Sci. Tech., 26, pp. 867-875 (1992) https://doi.org/10.1021/es00029a903
  25. Strivastava, R. C., Kinetics of fresh water hyacinth digestion in semi-continuous operation, Chemical Engineering Journal, 56, pp. B109-B113 (1995)
  26. Stuckey, D. C. and McCarty, P. L., The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge, Water Res., 18, pp. 1343-1353 (1984) https://doi.org/10.1016/0043-1354(84)90002-2
  27. Urano, K., Tomita, M. and Kameya, K., Recent researches and developments on anaerobic treatment - 4. Practical treatment of wastewater and solid waste, Water and Waste, 34, pp. 230-242 (1992)
  28. Zhao, H. W. and Viraraghavan, T., Analysis of the performance of an anaerobic digestion system at the Regina wastewater treatment plant, Bioresource Technol., 95, pp. 301-307 (2004) https://doi.org/10.1016/j.biortech.2004.02.023
  29. Zinatizadeh, A. A. L, Mohamed, A. R. Najafpour, G. D., Hasnain Isa, M. and Nasrollahzadeh, H., Kinetic evaluation of palm oil mill effluent digestion in a high rate up-flow anaerobic sludge fixed film bioreactor, Process Biochemisty, 41, pp. 1038-1046 (2006) https://doi.org/10.1016/j.procbio.2005.11.011
  30. Zweietering, M. H., Jongenburger, I., Rombouts, F. M. and van't Riet, K., Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56(6), pp. 1875-1881 (1990)