Synthesis of 6-(10-Alkylphenothiazine-3-vinylene)-2-methyl-4-dicyanomethylene-4H-pyran

적색발광재료용 6-(10-알킬페노티아진-3-비닐렌)-2-메틸-4-디시아노메틸렌-4H-피란의 합성

  • Chung, Pyung Jin (Department of Materials Science and Engineering, Dankook University) ;
  • Sung, Jin Hee (Department of Materials Science and Engineering, Dankook University)
  • 정평진 (단국대학교 신소재공학과) ;
  • 성진희 (단국대학교 신소재공학과)
  • Received : 2007.07.12
  • Accepted : 2007.12.03
  • Published : 2007.12.10

Abstract

6-(10-Alkylphenothiazine-3-vinylene)-2-methyl-4-dicyanomethylene-4H-pyran derivatives were synthesized by Knoevenagel condensation. They are red-emitting materials for organic light emitting device (OLED) which composed of electron donor of 6-(10-Alkylphenothiazine-3-vinylene) groups and electron acceptor of -2-methyl-4-dicyanomethylene-4H-pyran groups by a conjugated structure. The structural properties of reaction products were analyzed FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties can be determined by exitation spectra and emission spectra, respectively.

본 연구는 유기발광디바이스용 적색형광물질인 6-(10-알킬페노티아진-3-비닐렌)-2-메틸-4-디시아노메틸렌-4H-피란 합성에 관한 것으로서 유도체들은 Knoevenagel 축합반응에 의하여 합성되었다. 이들은 전자공여성의 6-(10-알킬페노티아진-3-비닐렌)기와 전자흡인성의 2-메틸-4-디시아노메틸렌-4H-피란의 공액구조를 가지고 있다. 합성한 물질은 각각 FT-IR, $^1H-NMR$ 등을 통하여 그의 구조적 특성을 확인하였고, 융점, 수득율을 통하여 열적 안정성, 반응성 등을 확인하였으며, UV-visible과 PL분석으로부터 이 형광재료들의 광학적 특성을 확인하였다.

Keywords

References

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. C. Adachi, S.Tokito, T. Tsutsui, and S. Saito, Jpn, J. Appl. Phys. Part 2, 27, L269 (1988) https://doi.org/10.1143/JJAP.27.L269
  3. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn, J. Appl. Phys. Part 2, 27, L713 (1988) https://doi.org/10.1143/JJAP.27.L713
  4. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989) https://doi.org/10.1063/1.343409
  5. I. Sokolik, R. Priestley, A. D. Walser, R. Dorsinville, and C. W. Tang, Appl. Phys. Lett., 69, 4168 (1996) https://doi.org/10.1063/1.117107
  6. C. Adachi and R. W. Gymer, Appl. Phys. Lett., 57, 531 (1990) https://doi.org/10.1063/1.103638
  7. J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995) https://doi.org/10.1063/1.114970
  8. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W.R.Salaneck, Nature, 397, 121 (1999)
  9. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forreser, Appl. Phys. Lett., 75, 4 (1999)
  10. P. J. Chung and J. H. Sung, J. Korean Ind. Eng. Chem., 17, 609 (2006)
  11. S.-S. P. Chou and C.-Y. Yu, Synthetic Metals, 142, 259 (2004)