Hypermethylation of the Ras Association Domain Family 1A (RASSF1A) Gene in Gallbladder Cancer

  • Kee, Se Kook (Department of Surgery, Gumi CHA Hospital) ;
  • Lee, Ji Yun (Departments of Anatomy, Kyungpook National University) ;
  • Kim, Mi Jin (Departments of Anatomy, Kyungpook National University) ;
  • Lee, Su Man (Departments of Anatomy, Kyungpook National University) ;
  • Jung, Young Won (Departments of Anatomy, Kyungpook National University) ;
  • Kim, Young Joo (Departments of Internal Medicine, Kyungpook National University) ;
  • Park, Jae Yong (Departments of Internal Medicine, Kyungpook National University) ;
  • Bae, Han Ik (Departments of Pathology, Kyungpook National University) ;
  • Hong, Hae Sook (Department of Nursing, College of Nursing, Kyungpook National University) ;
  • Yun, Young Kook (Department of Surgery, School of Medicine Kyungpook National University) ;
  • Kim, Sang Geol (Department of Surgery, School of Medicine Kyungpook National University) ;
  • Kim, Dong Sun (Departments of Anatomy, Kyungpook National University)
  • Received : 2007.05.09
  • Accepted : 2007.06.21
  • Published : 2007.12.31

Abstract

The tumor suppressor gene Ras association domain family 1A (RASSF1A) is highly methylated in a wide range of human sporadic tumors. The current study investigated the hypermethylation of RASSF1A, the expression of RASSF1A protein, and the correlation between these and the clinicopathological features of gallbladder (GB) cancer in Korean patients. Formalin-fixed, paraffin-embedded tumors and non-neoplastic GB tissues (22 carcinomas, 8 adenomas, 26 normal epithelia) were collected from patients who had undergone surgical resection. The methylation status of two regions of the RASSF1A CpG island was determined by methylation-specific PCR (MSP), and the expression of RASSF1A protein was examined by immunohistochemistry using tissue microarrays. The K-RAS mutation was analyzed by direct sequencing. Methylation of the RASSF1A promoter (region 1) was detected in 22.7% (5/22) of carcinomas, 12.5% (1/8) of adenomas, and 0% (0/26) of normal gallbladder epithelia (P = 0.025). Methylation of the first exon (region 2) was found in 36.4% (8/22) of carcinomas, 25.0% (2/8) of adenomas, and 8.0% (2/26) of normal gallbladder epithelia (P = 0.038). K-RAS mutations were present in 4.5% (1/22) of carcinomas and 25% (2/8) of adenomas. RASSF1A methylaton was not associated with clinicopathological factors or K-ras mutation. Reduction or loss of RASSF1A expression was observed in most methylated adenocarcinomas. Three RASSF1A-expressing human biliary tract cancer cell lines examined contained unmethylated promoters and exons 1. These results suggest that downregulation of RASSF1A expression by DNA hypermethylation may be involved in GB carcinogenesis.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Agathanggelou, A., Cooper, W. N., and Latif, F. (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 65, 3497-3508 https://doi.org/10.1158/0008-5472.CAN-04-4088
  2. Baylin, S. B. and Herman, J. G. (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168-174 https://doi.org/10.1016/S0168-9525(99)01971-X
  3. Burbee, D. G., Forgacs, E., Zochbauer-Muller, S., Shivakumar, L., Fong, W., et al. (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J. Natl. Cancer Inst. 93, 691-699 https://doi.org/10.1093/jnci/93.9.691
  4. Chan, A. O., Broaddus, R. R., Houlihan, P. S., Issa, J. P., Hamilton, S. R., et al. (2002) CpG island methylation in aberrant crypt foci of the colorectum. Am. J. Pathol. 160, 1823-1830 https://doi.org/10.1016/S0002-9440(10)61128-5
  5. Dammann, R., Schagdarsurengin, U., Liu, L., Otto, M., Gimm, O., et al. (2003) Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 22, 3806-3812 https://doi.org/10.1038/sj.onc.1206582
  6. Dammann, R., Schagdarsurengin, U., Seidel, C., Strunnikova, M., Rastetter, M., et al. (2005) The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol. Histopathol. 20, 645-663
  7. Hanada, K., Itoh, M., Fujii, F., Tsuchida, A., Ooishi, H., et al. (1996) K-ras and p53 mutations in stage I gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct. Cancer 77, 452-458 https://doi.org/10.1002/(SICI)1097-0142(19960201)77:3<452::AID-CNCR5>3.0.CO;2-M
  8. Hidaka, E., Yanagisawa, A., Sakai, Y., Seki, M., Kitagawa, T., et al. (1999) Losses of heterozygosity on chromosomes 17p and 9p/18q may play important roles in early and advanced phases of gallbladder carcinogenesis. J. Cancer Res. Clin. Oncol. 125, 439-443 https://doi.org/10.1007/s004320050300
  9. House, M. G., Wistuba, I. I., Argani, P., Guo, M. Z., Schulick, R. D., et al. (2003) Progression of gene hypermethylation in gallstone disease leading to gallbladder cancer. Ann. Surg. Oncol. 10, 882-889 https://doi.org/10.1245/ASO.2003.02.014
  10. Iwase, T., Nakazawa, S., Yamao, K., Yoshino, J., Inui, K., et al. (1997) Ras gene point mutations in gallbladder lesions associated with anomalous connection of pancreatobiliary ducts. Hepatogastroenterology 44, 1457-1462
  11. Jones, P. A. and Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428 https://doi.org/10.1038/nrg816
  12. Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., et al. (2002) Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12, 253-265 https://doi.org/10.1016/S0960-9822(02)00683-8
  13. Kim, Y. T., Kim, J., Jang, Y. H., Lee, W. J., Ryu, J. K., et al. (2001) Genetic alterations in gallbladder adenoma, dysplasia and carcinoma. Cancer Lett. 169, 59-68 https://doi.org/10.1016/S0304-3835(01)00562-6
  14. Kimura, K., Ohto, M., Saisho, H., Unozawa, T., Tsuchiya, Y., et al. (1985) Association of gallbladder carcinoma and anomalous pancreatobiliary ductal union. Gastroenterol. 89, 1258- 1265 https://doi.org/10.1016/0016-5085(85)90641-9
  15. Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., et al. (1998) Tissue microarray for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844-847 https://doi.org/10.1038/nm0798-844
  16. Lazcano-Ponce, E. C., Miquel, J. F., Munoz, N., Herrero, R., Ferrecio, C., et al. (2001) Epidermiology and molecular pathology of gallbladder cancer. CA-Cancer J. Clin. 51, 349-364
  17. Lee, S., Hwang, K. S., Lee, H. J., Kim, J. S., and Kang, G. H. (2004) Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Lab. Invest. 84, 884-893 https://doi.org/10.1038/labinvest.3700108
  18. Lee, J. Y., Lee, Y. M., Kim, M. J., Choi, J. Y., Park, E. K., et al., (2006a) Methylation of the mouse Dlx5 and Osx gene promoters regulates cell type-specific gene expression. Mol. Cells 22, 182-188
  19. Lee, Y. M., Lee, J. Y., Kim, M. J., Bae, H. I., Park, J. Y., et al. (2006b) Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Sci. 97, 1205-1210 https://doi.org/10.1111/j.1349-7006.2006.00320.x
  20. Lo, K. W., Kwong, J., Hui, A. B., Chan, S. Y., To, K. F., et al. (2001) High frequency of promoter methylation of RASSF1A in nasopharyngeal carcinomas. Cancer Res. 61, 3877-3881
  21. Misra, S., Chaturvedi, A., Misra, N. C., and Sharma, I. D. (2003) Carcinoma of the gallbladder. Lancet. Oncol. 4, 167- 176 https://doi.org/10.1016/S1470-2045(03)01021-0
  22. Moskaluk, C. A. and Kern, S. E. (1997) Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections. Am. J. Pathol. 150, 1547- 1552
  23. Nguyen, C., Liang, G., Nguyen, T. T., Tsao-Wei, D., Groshen, S., et al. (2001) Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J. Natl. Cancer Inst. 93, 1465-1472 https://doi.org/10.1093/jnci/93.19.1465
  24. Park, Y. K., Kim, S. W., and Park, Y. H. (1989) A clinical study of gallbladder carcinoma. Kor. J. Gastroenterol. 21, 113-120
  25. Riquelme, E., Tang, M., Baez, S., Diaz, A., Pruyas, M., et al. (2007) Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes gallbladder carcinoma. Cancer Lett. 250, 100-106 https://doi.org/10.1016/j.canlet.2006.09.019
  26. Shivakumar, L., Minna, J., Sakamaki, T., Pestell, R., and White, M. A. (2002) The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol. Cell. Biol. 22, 4309-4318 https://doi.org/10.1128/MCB.22.12.4309-4318.2002
  27. Song, M. S., Song, S. J., Ayad, N. G., Chang, J. S., Lee, J. H., et al. (2004) The tumor suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat. Cell Biol. 6, 129-137 https://doi.org/10.1038/ncb1091
  28. Spugnardi, M., Tommasi, S., Damman, R., Pfeifer, G. P., and Hoon, D. S. B. (2003) Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res. 63, 1639-1643
  29. Takahashi, T., Shivapurkar, N., Riquelme, E., Shigematsu, H., Reddy, J., et al. (2004) Aberrant promoter hypermethylation of multiple genes in gallbladder carcinoma and chonic cholecystitis. Clin. Cancer Res. 10, 6126-6133 https://doi.org/10.1158/1078-0432.CCR-04-0579
  30. Tomizawa, Y., Kohno, T., Kondo, H., Otsuka, A., Nishioka, M., et al. (2002) Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clin. Cancer Res. 8, 2362-2368
  31. Tozawa, T., Tamura, G., Honda, T., Nawata, S., Kimura, W., et al. (2004) Promoter hypermethylation of DAP-kinase is associated with poor survival in primary tract carcinoma patients. Cancer Sci. 95, 736-740 https://doi.org/10.1111/j.1349-7006.2004.tb03254.x
  32. Ushijima, T. and Okochi-Takada, E. (2005) Aberrant methylations in cancer cells: Where do they come from? Cancer Sci. 96, 206-211 https://doi.org/10.1111/j.1349-7006.2005.00035.x
  33. van Engeland, M., Roemen, G. M., Brink, M., Pachen M. M., Weijenberg, M. P., et al. (2002) K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 21, 3792-3795 https://doi.org/10.1038/sj.onc.1205466
  34. Watanabe, H., Date, K., Itoi, T., Matsubayashi, N., Yokoyama, M., et al. (1999) Histological and genetic changes in malignant transformation of gallbladder adenoma. Ann. Oncol. 10, 136-139 https://doi.org/10.1023/A:1008330012536
  35. Wistuba, I. I. and Gazdar, A. F. (2004) Gallbladder cancer: lessons from a rare tumor. Nat. Rev. Cancer 4, 695-706 https://doi.org/10.1038/nrc1429
  36. Wistuba, I. I., Miquel, J. F., Gazdar, A. F., and Albores-Saavedra, J. (1999) Gallbladder adenomas have molecular abnormalities different from those present in gallbladder carcinomas. Human Pathol. 30, 21-25 https://doi.org/10.1016/S0046-8177(99)90295-2
  37. Wistuba, I. I., Tang, M., Maitra, A., Alvarez, H., Troncoso, P., et al. (2001) Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res. 61, 3795-3800
  38. Wistuba, I. I., Ashfaq, R., Maitra, A., Alvarez, H., Riquelme, E., et al. (2002a) Fragile histidine triad gene abnormalities in the pathogenesis of gallbladder carcinoma. Am. J. Pathol. 160, 2073-2079 https://doi.org/10.1016/S0002-9440(10)61157-1
  39. Wistuba, I. I., Maitra, A., Carrasco, R., Tang, M., Troncoso, P., et al. (2002b) High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma. Br. J. Cancer 87, 432-440 https://doi.org/10.1038/sj.bjc.6600490