Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in Vitro

  • Kim, Sung-Eun (Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Byung-Kak (Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Gil, Jung-Eun (Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Suel-Kee (Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jong-Hoon (Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2006.10.18
  • 심사 : 2006.11.20
  • 발행 : 2007.02.28

초록

One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.

키워드

과제정보

연구 과제 주관 기관 : Stem Cell Research Center

참고문헌

  1. Abeyta, M. J., Clark, A. T., Rodriguez, R. T., Bodnar, M. S., Pera, R. A., et al. (2004) Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13, 601−608
  2. Ang, S. L., Wierda, A., Wong, D., Stevens, K. A., Cascio, S., et al. (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119, 1301−1315
  3. Bhattacharya, B., Miura, T., Brandenberger, R., Mejido, J., Luo, Y., et al. (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956−2964
  4. Carpenter, M. K., Rosler, E. S., Fisk, G. J., Brandenberger, R., Ares, X., et al. (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev. Dyn. 229, 243−258
  5. Charrier, J. B., Lapointe, F., Le Douarin, N. M., and Teillet, M. A. (2002) Dual origin of the floor plate in the avian embryo. Development 129, 4785−4796
  6. Clark, A. T., Bodnar, M. S., Fox, M., Rodriquez, R. T., Abeyta, M. J., et al. (2004) Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13, 727−739
  7. Denning, C., Allegrucci, C., Priddle, H., Barbadillo-Munoz, M. D., Anderson, D., et al. (2006) Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. Int. J. Dev. Biol. 50, 27−37
  8. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27−45
  9. Fox, N., Damjanov, I., Martinez-Hernandez, A., Knowles, B. B., and Solter, D. (1981) Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Dev. Biol. 83, 391−398
  10. Hoffman, L. M. and Carpenter, M. K. (2005) Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699−708
  11. Hoffman, L. M., Hall, L., Batten, J. L., Young, H., Pardasani, D., et al. (2005) X-inactivation status varies in human embryonic stem cell lines. Stem Cells 23, 1468−1478
  12. James, D., Levine, A. J., Besser, D., and Hemmati-Brivanlou, A. (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273−1282
  13. Kanai-Azuma, M., Kanai, Y., Gad, J. M., Tajima, Y., Taya, C., et al. (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129, 2367−2379
  14. Keller, G. (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129− 1155
  15. Lagarkova, M. A., Volchkov, P. Y., Lyakisheva, A. V., Philonenko, E. S., and Kiselev, S. L. (2006) Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle 5, 416−420
  16. Li, X. J., Du, Z. W., Zarnowska, E. D., Pankratz, M., Hansen, L. O., et al. (2005) Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215−221
  17. Molkentin, J. D., Lin, Q., Duncan, S. A., and Olson, E. N. (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061− 1072
  18. Munoz-Sanjuan, I. and Brivanlou, A. H. (2002) Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271−280
  19. Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372−376
  20. Oh, S. K., Kim, H. S., Ahn, H. J., Seol, H. W., Kim, Y. Y., et al. (2005) Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23, 211−219
  21. Perea-Gomez, A., Vella, F. D., Shawlot, W., Oulad-Abdelghani, M., Chazaud, C., et al. (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745−756
  22. Pevny, L. H., Sockanathan, S., Placzek, M., and Lovell-Badge, R. (1998) A role for SOX1 in neural determination. Development 125, 1967−1978
  23. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., and Melton, D. A. (2002) 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 298, 597−600
  24. Rao, R. R., Calhoun, J. D., Qin, X., Rekaya, R., Clark, J. K., et al. (2004) Comparative transcriptional profiling of two human embryonic stem cell lines. Biotechnol. Bioeng. 88, 273−286
  25. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., and Bongso, A. (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51−64
  26. Skottman, H., Mikkola, M., Lundin, K., Olsson, C., Stromberg, A., et al. (2005) Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 23, 1343−1356
  27. Son, Y. S., Park, J. H., Kang, Y. K., Park, J. S., Choi, H. S., et al. (2005) Heat shock 70-kDa protein 8 isoform 1 is expressed on the surface of human embryonic stem cells and downregulated upon differentiation. Stem Cells 23, 1502−1513
  28. Soudais, C., Bielinska, M., Heikinheimo, M., MacArthur, C. A., Narita, N., et al. (1995) Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121, 3877−3888
  29. Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., et al. (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363−4374
  30. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145−1147
  31. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., et al. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65−78
  32. Vallier, L., Reynolds, D., and Pedersen, R. A. (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403−421
  33. Ward, C. M., Barrow, K. M., and Stern, P. L. (2004) Significant variations in differentiation properties between independent mouse ES cell lines cultured under defined conditions. Exp. Cell Res. 293, 229−238
  34. Wilkinson, D. G., Bhatt, S., and Herrmann, B. G. (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657−659 https://doi.org/10.1038/343659a0
  35. Yan, Y., Yang, D., Zarnowska, E. D., Du, Z., Werbel, B., et al. (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23, 781−790
  36. Zeng, X., Miura, T., Luo, Y., Bhattacharya, B., Condie, B., et al. (2004) Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22, 292−312