DOI QR코드

DOI QR Code

ASCL2 Gene Expression Analysis and Its Association with Carcass Traits in Pigs

  • Cheng, H.C. (Key Laboratory of Pig Genetics and Breeding, Ministry of Agriculture Huazhong Agricultural University) ;
  • Zhang, F.W. (Key Laboratory of Pig Genetics and Breeding, Ministry of Agriculture Huazhong Agricultural University) ;
  • Deng, C.Y. (Key Laboratory of Pig Genetics and Breeding, Ministry of Agriculture Huazhong Agricultural University) ;
  • Jiang, C.D. (Department of Bio-engineering, College of Animal Science, Southwest University) ;
  • Xiong, Y.Z. (Key Laboratory of Pig Genetics and Breeding, Ministry of Agriculture Huazhong Agricultural University) ;
  • Li, F.E. (Key Laboratory of Pig Genetics and Breeding, Ministry of Agriculture Huazhong Agricultural University) ;
  • Lei, M.G. (Key Laboratory of Pig Genetics and Breeding, Ministry of Agriculture Huazhong Agricultural University)
  • Received : 2006.12.11
  • Accepted : 2007.05.21
  • Published : 2007.10.01

Abstract

Achaete-scute like 2 (ASCL2) gene encodes a member of the basic helix-loop-helix transcription factor which is essential for the maintenance of proliferating trophoblasts during placental development. ASCL2 gene preferentially expresses the maternal allele in the mouse. However, it escapes genomic imprinting in the human. In this study, the complete open reading frame consisting of 193 amino acids of ASCL2 gene was obtained. Sequence analysis indicated that a C-G mutation existed in the 3' region between Meishan and Large White pigs. The polymorphism was used to determine the monoallelic or biallelic expression with RT-PCR-RFLP in pigs of Large $White{\times}Meishan$ $F_1$ hybrids. Imprinting analysis indicated that the ASCL2 gene expression was biallelic in all the tested tissues (heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, fat, uterus, ovary and pituitary). PCR-RFLP was used to detect the polymorphism in 270 pigs of the "$Large\;White{\times}Meishan$" $F_2$ resource population. The statistical results showed highly significant associations of the genotypes and fat meat percentage (FMP), lean meat percentage (LMP) and ratio of lean to fat (RLF) (p<0.01), and significant associations of the genotypes and loin eye area (LEA) and internal fat rate (IFR) (p<0.05).

Keywords

References

  1. Alexander, L. J., D. L. Troyer, G. A. Rohrer, T. P. Smith, L. B. Schook and C. W. Beattie. 1996. Physical assignments of 68 porcine cosmid and lambda clones containing polymorphic microsatellites. Mamm. Genome. 7:368-372. https://doi.org/10.1007/s003359900106
  2. Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm and I. Hansson. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Sci. 263:1771-1774. https://doi.org/10.1126/science.8134840
  3. Dai, L. H., Y. Z. Xiong, C. Y. Deng, S. W. Jiang, B. Zuo, R. Zheng, F. E. Li and M. G. Lei. 2006. Association of the A-G polymorphism in porcine adiponectin gene with fat deposition and carcass traits. Asian-Aust. J. Anim. Sci. 19:779-783. https://doi.org/10.5713/ajas.2006.779
  4. Estelle, J., A. Mercade, J. L. Noguera, M. Perez-Enciso, C. Ovilo, A. Sanchez and J. M. Folch. 2005. Effect of the porcine IGF2- intron3-G3072A substitution in an outbred Large White population and in an Iberian${\times}$Landrace cross. J. Anim. Sci. 83:2723-2728.
  5. Guillemot, F., T. Caspary, S. M. Tilghman, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, D. J. Anderson, A. L. Joyner, J. Rossant and A. Nagy. 1995. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat. Genet. 9:235-242. https://doi.org/10.1038/ng0395-235
  6. Jeon, J. T., O. Carlborg, A. Tornsten, E. Giuffra, V. Amarger, P. Chardon, L. Andersson-Eklund, K. Andersson, I. Hansson, K. Lundstrom and L. Andersson. 1999. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat. Genet. 21:157-158. https://doi.org/10.1038/5938
  7. Jubb, A. M., S. Chalasani, G. D. Frantz, R. Smits, H. I. Grabsch, V. Kavi, N. J. Maughan, K. J. Hillan, P. Quirke and H. Koeppen. 2006. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene. 25:3445-3457. https://doi.org/10.1038/sj.onc.1209382
  8. Jungerius, B. J., A. S. van Laere, M. F. Te Pas, B. A van Oost, L. Andersson and M. A. Groenen. 2004. The IGF2-intron3- G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan${\times}$European white pig intercross. Genet. Res. 84:95-101. https://doi.org/10.1017/S0016672304007098
  9. Koning, D. J., A. P. Rattink, B. Harlizius, J. A. Arendonk, E. W. Brascamp and M. A. Groenen. 2000. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc. Natl. Acad. Sci. USA. 97:7947-7950 https://doi.org/10.1073/pnas.140216397
  10. Lee, M., P. S. Brandenburg, G. M. Landes, M. Adams, G. Miller and A. P. Feinberg. 1999. Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum. Mol. Genet. 8:683-690. https://doi.org/10.1093/hmg/8.4.683
  11. Liu, B. H. 1998. Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, LLC
  12. Miyamoto, T., S. Hasuike, Y. Jinno, H. Soejima, K. Yun, K. Miura, M. Ishikawa and N. Niikawa. 2002. The human ASCL2 gene escaping genomic imprinting and its expression pattern. Assist. Reprod. Genet. 19:240-244. https://doi.org/10.1023/A:1015362903486
  13. Nezer, C., L. Moreau, B. Brouwers, W. Coppieters, J. Detilleux, R. Hanset, L. Karim, A. Kvasz, P. Leroy and M. Georges. 1999. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat. Genet. 21:155-156. https://doi.org/10.1038/5935
  14. Nolan, C. M., J. K. Killian, J. N. Petitte and R. L. Jirtle. 2001. Imprint status of M6P/IGF2R and IGF2 in chickens. Dev. Genes. Evol. 211:179-183. https://doi.org/10.1007/s004270000132
  15. Reik, W., F. Santos and W. Dean. 2003. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenol. 59:21-32. https://doi.org/10.1016/S0093-691X(02)01269-4
  16. Smith, R. J., W. Dean, G. Konfortova and G. Kelsey. 2003. Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res. 13:558-569. https://doi.org/10.1101/gr.781503
  17. Stepan, H., W. Marqwardt, Y. Kuhn, M. Hockel, H. P. Schultheiss and T. Walther. 2003. Structure and regulation of the murine Mash2 gene. Biol. Reprod. J. 68:40-44. https://doi.org/10.1095/biolreprod.102.004945
  18. Wang, G., B. Yan, X. Deng, C. Li, X. Hu and N. Li. 2005. Insulinlike growth factor 2 as a candidate gene influencing growth and carcass traits and its bialleleic expression in chicken. Sci. China. C. Life. Sci. 48:187-194. https://doi.org/10.1007/BF02879672
  19. Xiong, Y. Z. and C. Y. Deng. 1999. Technical testing rule of lean pig. Chinese Agricultural Press, Beijing.
  20. Zhang, F. W., H. C. Cheng, C. Y. Deng, Y. Z. Xiong, F. E. Li and M. G. Lei. 2006. cDNA cloning, tissue expression and association of porcine pleiomorphic adenoma gene-like 1 (PLAGL1) gene with carcass traits. Asian-Aust. J. Anim. Sci. 19:1257-1261. https://doi.org/10.5713/ajas.2006.1257

Cited by

  1. Assessment of genomic imprinting of PPP1R9A, NAP1L5 and PEG3 in pigs vol.47, pp.4, 2011, https://doi.org/10.1134/S1022795411040053
  2. Comparative Analysis of Repetitive Elements of Imprinting Genes Reveals Eleven Candidate Imprinting Genes in Cattle vol.22, pp.6, 2007, https://doi.org/10.5713/ajas.2009.80485
  3. Imprinted Gene mRNA Expression during Porcine Peri-implantation Development vol.23, pp.6, 2007, https://doi.org/10.5713/ajas.2010.80423