Leukotriene Synthesis in Response to A23187 Is Inhibited by Methyl-β-Cyclodextrin in RBL-2H3 Cells

  • You, Hye Jin (School of Life Sciences and Biotechnology, Korea University) ;
  • Seo, Ji-Min (School of Life Sciences and Biotechnology, Korea University) ;
  • Moon, Ji-Young (School of Life Sciences and Biotechnology, Korea University) ;
  • Han, Sung-Sik (School of Life Sciences and Biotechnology, Korea University) ;
  • Ko, Young-Gyu (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jae-Hong (School of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2006.10.23
  • 심사 : 2006.12.27
  • 발행 : 2007.02.28

초록

Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase $A_2$ ($cPLA_2$), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-${\beta}$-cyclodextrin (MβCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with M${\beta}$CD, and this effect was reversed when cholesterol was added. In an approach to identifying the $M{\beta}CD$-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.

키워드

과제정보

연구 과제 주관 기관 : Korea Science and Engineering Foundation (KOSEF), Ministry of Health & Welfare

참고문헌

  1. Albi, E., Peloso, I., and Magni, M. V. (1999) Nuclear membrane sphingomyelin-cholesterol changes in rat liver after hepatectomy. Biochem. Biophys. Res. Commun. 262, 692−695
  2. Barabe, F., Pare, G., Fernandes, M. J. G., Bourgoin, S. G., and Naccache, P. H. (2002) Cholesterol-modulating agents selectively inhibit calcium influx by chemoattractants in human neutrophils. J. Biol. Chem. 277, 13473−13478
  3. Bickel, P. E., Scherer, P. E., Schnitzer, J. E., Oh, P., Lisanti, M. P., et al. (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272, 13793−13802
  4. Brock, T. G., Maydanski, E., McNish, R. W., and Peters-Golden, M. (2001) Co-localization of leukotriene A4 hydrolase with 5-lipoxygenase in nuclei of alveolar macrophages and rat basophilic leukemia cells but not neutrophils. J. Biol. Chem. 276, 35071−35077
  5. Brock, T. G., McNish, R. W., and Peters-Golden, M. (1995) Translocation and leukotriene synthetic capacity of nuclear 5-lipoxygenase in rat basophilic leukemia cells and alveolar macrophages. J. Biol. Chem. 270, 21652−21658
  6. Brock, T. G., Paine, R. 3rd., and Peters-Golden, M. (1994) Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J. Biol. Chem. 269, 22059− 22066
  7. Brown, D. A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111− 136
  8. Brown, D. A. and Rose J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533−544
  9. Cho, S.-H., You, H. J., Woo, C. H., Yoo, Y. J., and Kim, J. H. (2004) Rac and protein kinase $C-\delta$ regulate ERKs and cytosolic phospholipase $A_2$ in $Fc{\varepsilon}RI$ signaling to cysteinyl leukotriene synthesis in mast cells. J. Immunol. 173, 624−631
  10. Christmas, P., Weber, B. M., McKee, M., Brown, D., and Soberman, R. J. (2002) Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem. 277, 28902−28908
  11. Dixon, R. A., Diehl, R. E., Opas, E., Rands, E., Vickers, P. J., et al. (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282−284
  12. Doan, J. E. S., Windmiller, D. A., and Riches, D. W. H. (2004) Differential Regulation of TNF-R1 signaling: lipid raft dependency of $p42^{mapk/erk2}$ activation, but not $NF-{\kappa}B$ activation. J. Immunol. 172, 7654−7660
  13. Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B., et al. (1999) Quantitative analysis of phospholipids in functionally important membrane domains from RBL- 2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056−8063
  14. Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871−1875 https://doi.org/10.1126/science.1065323
  15. Gimpl, G., Burger, K., and Fahrenholz, F. (1997) Cholesterol as modulator of receptor function. Biochemstry 36, 10959− 10974
  16. Goetzl, E. J., An, S., and Smith, W. L. (1995) Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J. 9, 1051−1058
  17. Haeggstrom, J. Z., Wetterholm, A., Medina, J. F., and Samuelsson, B. (1993) Leukotriene A4 hydrolase: structural and functional properties of the active center. J. Lipid Mediat. 6, 1−13
  18. Ikonen, E. (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470−477
  19. Jakobsson, P. J., Mancini, J. A., Riendeau, D., and Ford- Hutchinson, A. W. (1997) Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J. Biol. Chem. 272, 22934−22939
  20. Keller, P. and Simons, K. (1997) Post-Golgi biosynthetic trafficking. J. Cell Sci. 110, 3001−3009
  21. Kilsdonk, E. P., Yancey, P. G., Stoudt, G. W., Bangerter, F. W., Johnson, W. J., et al. (1995) Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250−17256
  22. Kim, B. C. and Kim J. H. (1997) Nuclear signalling by Rac GTPase: essential role of phospholipase $A_2$. Biochem. J. 326, 333−337
  23. Kim, J. Y., Kim, D. Y., Lee, Y. S., Lee, B. K., Lee, K.-H., et al. (2006) DA-9601, artemisia asiatica herbal extract, ameliorates airway inflammation of allergic asthma in mice. Mol. Cells 22, 104−112
  24. Kokubo, H., Helms, J. B., Ohno-Iwashita, Y., Shimada, Y., Horikoshi, Y., et al. (2003) Ultrastructural localization of flotillin- 1 to cholesterol-rich membrane microdomains, rafts in rat brain tissue. Brain Res. 965, 83−90
  25. Lewis, R. A., Austen, K. F., and Soberman, R. J. (1990) Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323, 645−655
  26. Mandal, A. K., Skoch, J., Bacskai, B. J., Hyman, B. T., Christmas, P., et al. (2004) The membrane organization of leukotriene synthesis. Proc. Natl. Acad. Sci. USA 101, 6587−6592
  27. Miller, D. K., Gillard, J. W., Vickers, P. J., Sadowski, S., Leveille, C., et al. (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343, 278−281
  28. Pike, L. J. (2003) Lipid rafts:bringing order to chaos. J. Lipid Res. 44, 655−667
  29. Plante, H., Picard, S., Mancini, J., and Borgeat, P. (2005) 5- lipoxygenase activating protein homodimer in human neutrophils. Biochem. J. 393(Ptl), 211−218
  30. Reid, G. K., Kargman, S., Vickers, P. J., Mancini, J. A., Leveille, C., et al. (1990) Correlation between expression of 5- lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J. Biol. Chem. 265, 19818−19823
  31. Samuelsson, B. (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220, 568−575
  32. Samuelsson, B. and Funk, C. D. (1989) Enzymes involved in the biosynthesis of leukotriene B4. J. Biol. Chem. 264, 19469− 19472
  33. Santamaria, A., Castellanos, E., Gomez, V., Benedit, P., Renau- Piqueras, J., et al. (2005) PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol. Cell. Biol. 25, 1900−1911
  34. Sheets, E. D., Holowka, D., and Baird, B. (1999b) Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of F$c\varepsilon$RI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877−887
  35. Simons, K. and Ehehalt, R. (2002) Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597−603
  36. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nature Rev. 1, 31−39
  37. Slaughter, N., Laux, I., Tu, X., Whitelegge, J., Zhu, X., et al. (2003) The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clin. Immunol. 108, 138−151
  38. Soberman, R. J. and Christmas, P. (2003) The organization and consequences of eicosanoid signaling. J. Clin. Invest. 111, 1107−1113
  39. Surviladze, Z., Draberova, L., Kovarova, M., Boubelik, M., and Draber, P. (2001) Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31, 1−10
  40. Wang, H., Rapp, U. R., and Reed, J. C. (1996) Bcl-2 Targets the protein kinase Raf-1 to mitochondria. Cell 87, 629−638
  41. Woods, J. W., Evans, J. F., Ethier, D., Scott, S., Vickers, P. J., et al. (1993) 5-Lipoxygenase and 5-lipoxygenase activating protein are localized in the nuclear envelope of activated human leukocytes. J. Exp. Med. 178, 1935−1946