Status of Health and Safety Management in Occupational Hygiene Laboratories in Korea

Hyukseung $Yang^{1\dagger}$ · Jaewook Choi² · Seokjoon Yoon² · Terry FARR³

¹Center for Life and Environmental Science, Neodin Medical Institute

²Department of Environmental and Occupational Health, Graduate Studies of Public Health, Korea University ³Occupational Health and Safety, School of Public Health, Queensland University of Technology, Australia

Status of Health and Safety Management in Occupational Hygiene Laboratories in Korean

Hyukseung Yang^{1†} · Jaewook Choi² · Seokjoon Yoon² · Terry FARR³

¹Center for Life and Environmental Science, Neodin Medical Institute, Seoul, Korea ²Department of Environmental and Occupational Health, Graduate Studies of Public Health, Korea University ³Occupational Health and Safety, School of Public Health, Queensland University of Technology, Australia

목적: 1990년대 초반부터 시작된 우리나라의 산업 보건에 대한 사회적 관심의 증대와 시장의 요구에 따라 산업위생기관의 양적인 팽창이 이루어지긴 하였으나 실험실 관련 안전보건규정이 미비한 상태에서 추진되 어 산업위생 실험실에서 다양한 유해 · 위험성 인자를 취급함에도 불구하고 사용되는 량이 소규모로 인해 안 전보건과 관련된 사항은 대부분 간과하고 있으며, 산업 위생 실험실의 안전보건관리 실태는 선진외국에 비해 상당히 낙후되어 있는 실정이다.

따라서 본 연구는 우리나라 산업위생 실험실과 관련 한 안전보건관리 실태를 평가함으로써 향후 실험실의 안전보건관리 수준을 향상 시키는데 효과적인 자료로 활용하는데 기여하고자 한다.

방법: 산업위생실험실의 안전보건 실태를 파악하기 위해 설문조사를 수행하였으며, 설문은 실험실의 전반 적인 안전보건, 화학물질 저장 및 용기, 가연성 및 인화 성 화학물질, 가스 실린더, 의사전달, 응급처치 및 비상 사태 장비, 정리정돈, 소방안전, 전기안전, 개인보호구, 흉후드 및 환기, 및 이황화탄소 취급 사례로서 12개 영 역으로 구성되었다.

연구대상은 2001년 한국산업안전공단 정도관리프 로그램에 참여한 기관으로서 총 대상은 119개 기관이 었다. 연구기간은 2002년 7월 01일부터 8월 30일까지 약 60일 이었다. 설문은 반송봉투에 넣어 설문완성 후 연구자에게 보낼 수 있도록 배려하였으며, 1차 설문을 보낸 후 2주 후에 설문 참여를 독려하기 위해 엽서를 발 송하였고, 다시 2주 후에 각 산업위생기관에 개별 전화 연락을 취하였다. 그 결과 63% (75개 기관)의 완성된 설문을 얻을 수 있었다.

설문의 총 조사항목은 79문항으로 구성되어 있으며, 산업위생실험실의 안전보건 수준을 정량적으로 평가하 기 위해 안전보건 매뉴얼, 교육훈련프로그램 및 한국산 업안전공단 실험실 지침서를 보유한 기관과 그렇지 않 은 기관간의 차이는 선별된 67문항에 대해 각 문항에 합당하거나 적절할 경우 1점을 부여하는 방식으로 점 수화하였다. 이들의 관련성을 파악하기 위하여 Microsoft-Excel 2000 프로그램을 이용하여 twotailed t-test 분석을 실시하였다.

결과

1. 산업위생실험실 운영과 관련한 67개 항목(항목별 로 각 1점 부여)에 대한 안전보건 성과지수화 (100점 으로 점수 환산) 결과 안전보건 매뉴얼을 보유한 기관 은 42.98±13.36(p<0.001)점, 교육훈련프로그램을 보 유한 기관은 50.75±14.12(p<0.01)점, 한국산업안전

공단 실험실 지침서를 보유한 기관은 43.58±11.92 (p<0.01)점으로 그렇지 않은 기관에 비해 통계적으로 유의하게 높은 점수분포를 보였다.

2. 화학물질 보관 캐비닛이 있는 기관 중 64.8%의 기관은 화학물질을 알파벳 순으로, 27.8%는 분류 기준 에 따라, 그리고 7.4%는 무작위로 보관하고 있었다.

3. 단지 8.0% (6개)의 기관만이 실험실내에 눈세정 분수(2개), 샤워기(3개) 및 눈세정물병(3개, 2개 중복 응답 기관)과 같은 응급처치 장치 및 물품을 갖추고 있 었다.

4. 89.0%의 기관이 흄후드내에 화학물질을 보관하고 있었다.

5. 물질안전보건자료, 흄후드 기록지, 비상사태 절차 서 및 한국산업안전공단 실험실 지침서와 같은 문서관 리는 부적절하게 관리 및 기록되고 있었다.

6. 대부분의 산업위생 실험실은 응급처치 장비, 화학 물질 또는 가스용기 보관실과 같은 실험실 안전설비가 부족할 뿐만 아니라 정리정돈, 화학물질 저장 캐비닛, 안전보호구 및 흉후드와 같은 관리가 미비하였다. 결론: 이상의 결과에 근거하여 기관장은 실험실의 안전보건관리를 위하여 문서관리체계를 제공하고, 모 든 실험실 종사자가 적절한 개인보호구를 착용할 수 있 도록 하며, 비상 장비를 설치하고, 실험실과 관련한 적 절한 규정을 제정하며, 교육훈련 프로그램을 제공하여 야 한다. 또한 실험실 종사자는 실험 중 적절한 개인보 호구의 착용하고, 비상장비 이용에 대한 교육훈련에 참 여하며, 적절한 실험실 운영관리에 대한 책임감을 가져 야 한다. 위의 권고사항 이행을 위해서 KOSHA는 KQCP 프로그램에 실험실 안전보건관리 항목을 삽입 하여 주기적인 평가를 수행할 필요가 있다. 우리나라 실험실의 특성을 고려할 때본 연구결과는 일반 실험실 에도 적용될 수 있을 것으로 생각된다.

Key Words : Health and safety management, Occupational hygiene laboratory, Questionnaire survey, Korea

I. Introduction

A chemical laboratory is a facility where scientific experimentation or research is performed. It is a workplace where a wide variety of hazardous chemicals and gases are usually stored and used in small quantities on a non-production basis (Lieckfield & Farrar, 1991; OSHA, 1996; Wawzyniecki & Thompson, 1997).

Occupational hygiene is an area of activities that involve anticipation, assessment, and surveillance of health hazards in the working environment with the objective of protecting worker health and well-being, as well as safeguarding the community at large (IOHA, 2007). As part of this activity, an occupational hygiene laboratory generally analyzes samples collected from the field to assess exposures or potential exposures of workers to dusts, fibers, fumes, mist, gases, and vapors in their workplaces.

According to the results of researchers' observations on the conditions of occupational health and safety for laboratory workers, it was found that most Korean occupational hygiene organizations have limited spaces for laboratories due to the small size of institutions, and that laboratory space is often shared with chemical and gas cylinder storage rooms, analytical laboratories, and work offices (Yoo et al., 2000). Most hazardous chemicals are stored in fume hoods and drawers without appropriate ventilation systems. Gas cylinders are stored beside instruments or at corners of the laboratory. Therefore, even though only small quantities of chemicals and gases are stored and used in the occupational hygiene laboratory, the laboratory workers could be exposed to unknown or highly toxic substances and highly corrosive or reactive liquids, resulting in serious consequences such as uncontrolled release of heat or fire and explosion hazards in some cases.

The Korean Quality Control Program (KQCP) is designed to ensure accuracy and precision of analytical data in the occupational hygiene survey institutions, on a biannual basis. This is undertaken by the Korea Occupational Safety and Health Agency (KOSHA) and the Korean Society of Occupational and Environmental Hygiene (KSOEH) in accordance with the Industrial Safety and Health Act (No. 42), Enforcement Regulation (No. 97-2), and Notification of Ministry of Labor (No. 99-38) (KOSHA, 2001 a, b). The KQCP has been improving the quality of laboratory analysis, as well as providing accurate analytical data for the occupational hygiene survey.

The quality assurance provision focuses on the quality of

접수일 : 2006년 12월 5일, 채택일 : 2007년 3월 15일

후 교신저자: Hyukseung Yang (Tel: 02-2244-6500(ext.520), Fax: 02-2243-0384)

analytical data and includes data on the status of employment of analysts and instruments of participating institutions. Moreover, the KOSHA laboratory guideline does not give much detail about the health and safety of occupational hygiene laboratories. Therefore, occupational hygiene laboratories are not only faced with poor working conditions, but are also being inappropriately managed under the current system of occupational health and safety provision.

This research is aimed to identify and assess the conditions of health and safety related to the operation of Korean occupational hygiene laboratories. The research has also been conducted to identify inadequacies in management of risks in occupational hygiene laboratories, so that suitable provisions can be developed to better manage those risks.

II. Methods & Analysis

A questionnaire on health and safety performance was designed to identify occupational hygiene laboratory status. The occupational hygiene laboratory in this study signified the institutions to participate in the KQCP (which was undertaken by the KOSHA and KSOEH in 2001) and generally analyzed samples collected from the field to assess exposures or potential exposures of workers.

119 institutions have been invited to participate in the KQCP. This study included all participating institutions for KQCP.

The survey questionnaire consisted of 12 sections: general health and safety, chemical storage and containers, flammable/combustible liquids, gas cylinders, hazard communications, first aid and emergency equipment, housekeeping, fire safety, electrical safety, personal protective equipment (PPE), fume hoods and general ventilation, and a case study on carbon disulfide.

A questionnaire on health and safety performance was designed to identify occupational hygiene laboratory status and was mailed to each institution of the participating KQCP in August 2002. 63.0% (75 institutions) of questionnaires were returned completed, 3.0% of questionnaires were returned uncompleted, 3.0% of questionnaires were returned to the sender unopened, and 30.0% of questionnaires were not returned at all.

Health and safety performance was evaluated for each institution by scoring 67 items in the questionnaire (Table 1). To quantitatively assess whether the institutions that possessed the health and safety manual, training program, and KOSHA laboratory guideline had managed better than those that did not, one point was assigned to each item marking if the applicable institution was suitable or appropriate for the purpose of the questionnaire item. The score of health and safety performance has been converted to a 100.0% scale.

In order to identify any associations between the score of health and safety performance and the use of a health and safety manual, the existence of a training program, and the use of the KOSHA laboratory guideline, respectively, a two-tailed t-test was undertaken using the Microsoft-Excel 2000 program for Windows.

III. Results

Among the 75 responding institutions, a total of 138 chemical analysts were employed, and each institution had an average of 1.8 (range 1-8) analysts. Universities, university institutions, and companies' in-house laboratories had more than 2 analysts, while the other institution groups employed less than 2 analysts in their laboratories (Table 2).

According to the findings, in total, 54.7% of the institutions provided a health and safety manual in their laboratories and kept a laboratory health and safety manual (Table 3). The mean score of the institutions for health and safety that provided a health and safety manual was 42.98 ± 13.36 (range 21-76). In comparison, the institutions that did not provide a health and safety manual scored 31.04 ± 10.78 (13-64). The mean score of the institutions that provided the manual was statistically significantly higher than that of those that did not (p<0.001).

Only 13.3% of the institutions had a training program for safety in the laboratories (Table 3), meaning most institutions did not provide a safety training program for their laboratory workers. The same analytical methods were applied to training programs for safety in the laboratories. The mean score of the institutions that had a training program in their laboratories was 50.75 ± 14.12 (range 28-75). On the other hand, the institutions that did not have training programs scored 35.52 ± 12.28 (13-71). A statistically significant difference was identified in the mean score of health and safety performance between the institutions that provided the training program and that of those that did not (p<0.01).

The KOSHA laboratory safety guideline has been recently published to provide information about laboratory health and safety and also to recommend maintaining its guideline at all laboratories. However, only 36.0% of the institutions had the KOSHA guidelines in their laboratories (Table 3). The mean score (43.58 ± 11.92 , range 28-76) of the organizations that had the KOSHA laboratory guideline was higher than that of those that did not (34.48 ± 13.48 ,

TIL (0) (c	
Table 1. Contents a	ind defails of h	ealth and satefy	performance of	luestionnaire
rubio n contonto u	ind docume of m	outill and outory	portornanoo o	

Categories of health and safety	No. of questions	Details of questionnaire items
General Health and Safety	4	Regular general health examinations
		Health and safety manual
		Training program for safe work
		KOSHA laboratory guide
Chemical Storage and Containers	4	Chemical storeroom
		Adequate air-conditioning and/or dehumidifier systems in the
		chemical storeroom
		Exposed to direct sunlight or localized heat
		Accessible only to authorized personnel
Flammable/combustible liquids	3	Flammable liquid storage cabinet
		"No Smiking" signs
	2	Flammable liquid cintainers kept away from fire hazards
Gas cylinders	3	Gas cylinder storage room
		All gas cylinders stored in
		Empty gas cylinders stored separately
II	5	Valve-cap securely in place of gas cylinders
Hazard communications	5	Emergency procedures
		Emergency evacuation plans
		Evacuation practices
		Material safety data sheets
First aid & amorganou againment		Laboratory chemical inventory
First aid & emergency equipment	5	First aid supplies
		Emergency telephone numbers
		Emergency personal protective equipment Self-contained breathing apparatus
		Emergency equipment
Housekaaning	9	Walkways and exits marked
Housekeeping	2	Walkways and exits free
		Eat or drink in laboratory
		Separate eating area
		Specific labelled containers (Chemical waste, Sharps, General
		waste, Recyclable solvents)
		Chemical waste management guideline
Fire safety	6	Adequate fire extinguishers
The safety	0	Periodically inspected and maintained
		Fire alarm system
		Fire exits marked
		"No Smiking" signs posted
		Automatic fire extinguishing
Electrical safety	4	Electrical equipment properly grounded
		Extension cords
		Electrical boxes and panels
		Electrical cords suspended
Personal protective equipment	2	Wearing of appropriate PPE compulsory
	-	Wear open-toed footwear
Fume hoods	5	Fume hood(s)
	~	Electical services within the fume hood
		Checked and recorded periodically
		Storage of chemicals
		Canopy type hoods provided over equipment
Carbon disulfide as a case study	17	Health serveillance
	- ,	Monitored for urinary-TTCA
		Standard operating procedure
		Written procedures for cleaning up spills
		Spills of carbon disulfide
		Spills of carbon disulfide Formal educational program
		Formal educational program
		Formal educational program Reporting system related incidents (spills, Skin/eye splash,
		Formal educational program Reporting system related incidents (spills, Skin/eye splash, Inhalation, Irritation, Symptoms of exposure)
		Formal educational program Reporting system related incidents (spills, Skin/eye splash, Inhalation, Irritation, Symptoms of exposure) Air sampling for carbon disulfide
		Formal educational program Reporting system related incidents (spills, Skin/eye splash, Inhalation, Irritation, Symptoms of exposure) Air sampling for carbon disulfide Ventilation system performance
		Formal educational program Reporting system related incidents (spills, Skin/eye splash, Inhalation, Irritation, Symptoms of exposure) Air sampling for carbon disulfide Ventilation system performance Material safety data sheet
		Formal educational program Reporting system related incidents (spills, Skin/eye splash, Inhalation, Irritation, Symptoms of exposure) Air sampling for carbon disulfide Ventilation system performance Material safety data sheet Smoking prohibited
		Formal educational program Reporting system related incidents (spills, Skin/eye splash, Inhalation, Irritation, Symptoms of exposure) Air sampling for carbon disulfide Ventilation system performance Material safety data sheet

13-71). The analytical data indicated a statistically significant difference between institutions that maintained the KOSHA guideline and those that did not (p<0.01).

As a result, it is concluded that the institutions that provided a health and safety manual, a training program, and the KOSHA laboratory guideline managed their laboratories' health and safety facilities better than the institutions that did not provide these services.

A total of 60.0% of the institutions had a chemical storage room. Among them, 64.8% of the institutions alphabetically stored chemicals in store areas and 7.4% of the institutions stored chemicals by random placement. Only 27.8% of the responding institutions stored chemicals by class; for example, oxidizers with oxidizers and flammables with non-flammables (Table 4).

Gases such as acetylene were used as an ignition source to operate analytical instruments. Other compressed gases used in occupational hygiene laboratories were compressed air, nitrogen, hydrogen, helium, and argon. 62.7% of the institutions confirmed the use of gas cylinders in the laboratories. An average of 55.1% of gas cylinders were secured by brackets or chains to prevent them from falling or being knocked over (Figure 1).

A total of 54.7% of the institutions had Material Safety Data Sheets (MSDSs) readily available in their laboratories. However, 42.7% of the remaining institutions did not store MSDSs and the last 2.7% of them replied that they did not know whether they had MSDSs or not.

Multiple responses were made that only 8.0% of the institutions (6 institutions; 2-multiple responses) supplied eyewash fountains (2), safety showers (3), and eyewash bottles (3) and all of them were accessible less than 10 meters from the hazardous area. However, 92.0% of the remaining institutions did not have all of the eyewash fountains, safety showers, and eyewash bottles.

In total, 70.7% of the institutions provided fire extinguishers suited to the fire hazards in their laboratories. Of these, 54.7% of the

No. of lab. analysts	University laboratories	KIHA [*] laboratories	University hospital laboratories	Private & public hospital laboratories	Company in-house laboratories	Total
1	0	7	8	13	3	31
2	2	4	10	11	8	70
3	3	0	1	0	1	15
4	1	0	0	0	0	4
5	0	0	0	0	2	10
8	0	1	0	0	0	8
Total	17	23	31	35	32	138

Table 2. Number of laboratory analysts employed by each institutional laboratory grup

* Korea Industrial Health Association

Table 3. Distribution of health and safety performance score with respect to possession of the health and safety manual, training program, and KOSHA laboratory guideline

Possession	No. of	Mean sco	Daughag	
	institutions	Yes	No	P-value
Health and safety manual	41	42.98±13.36	31.04±10.78	< 0.001
Safety training program	10	50.75±14.12	35.52±12.28	< 0.01
KOSHA laboratory guideline	27	43.58±11.92	34.48±13.48	< 0.01

*Mean score was calculated as a percentage score that 67 questions assigned one point by each item, if yes

[†]SD : Standard deviation

institutions periodically inspected and maintained their fire extinguishers.

Among the 75 respondents, considering compound responses, lab coats (86.7%), gloves (62.7%), and respiratory protection equipment (50.7%) were usually provided to the laboratory workers. However, only 42.7% of the institutions supplied eye protectors, 21.3% supplied face protectors, and 9.3% supplied footwear and aprons. Only 14.7% of the institutions had strict rules about wearing PPE at all times in the laboratories. A total of 66.7% of the institutions permitted the wearing of open-toed footwear during experimentation in the laboratory.

Of the 75 respondents, only 12.3% of the institutions made periodical checks and maintained records of fume hood performance. The average minimum acceptable face velocity of the fume hoods was 0.55m/s (range: 0.21-0.70) as a performance standard of their fume hood(s), which was checked and recorded by laboratory workers.

The storage of chemicals in fume hoods is usually acceptable in most institutions in Korea. A total of 89.0% of the institutions stored their chemicals in the fume hoods (Table 5; Figure 2).

Considering multiple responses, 66.7% of the institutions provided mechanical general ventilation systems, 61.3% of the institutions supplied air conditioning, and 20.0% of the institutions maintained natural general ventilation systems. In relation to the maintenance of air quality in the laboratory, 48.0% of the institutions considered temperature as a more relevant factor in creating comfortable conditions in the laboratory environment, rather than being concerned with general air quality, humidity, specific contaminants, and air velocity.

IV. Discussion

In general, a wide variety of hazardous chemicals and gases were

Categories	No. of institutions	Details of questionnaire items	No	%
Chemical storage room*	45 [†]	Stored chemicals by alphabetically	35	64.8
C C		Stored chemicals by class	15	27.8
		Stored chemicals by random	4	7.4
Gas cylinders in laboratories	47 [†]	secured by brackets, etc.	_	55.1 [§]
MSDSs availability	75	Yes	41	54.7
		No	32	42.7
		Do not know	2	2.7
Emergency facilities*	75	Yes	6	8.0
Fire extinguishers	75	Yes	53	70.7
		No	15	20.0
		Do not know	7	9.3
Periodical inspection of fire	53 [¶]	Yes	29	54.7
Extinguishers		No	10	18.9
		Do not know	14	26.4
Personal protective equipment*	75	Laboratory coat	65	86.7
		Gloves	47	62.7
		Respiratory protection	38	50.7
		Eye protection	32	42.7
		Face shield	16	21.3
		Footwear	7	9.3
		Apron	7	9.3

Table 4. Laboratory healty and safety features

*Multiple responses, [§]Average percentage of secured by brackets, etc.

⁺A total of 45 institutions possessed chemical storage room(s) in their lab among 75 institutions

⁺A total of 47 institutions used gas cylinder(s) in their lab among 75 institutions

¹ A total of 53 institutions had fire extinguisher(s) to the fire hazards in their lab among 75 institutions

used in occupational hygiene laboratories even though very small amounts of substances were employed to analyze individual samples. Because of this, among other factors, hazard controls in laboratories are difficult to administrate, and it is not easy to manage these hazardous substances in the laboratory.

A health and safety manual was part of the program for providing safety information to laboratory workers. The manual contained adequate occupational health and safety information as necessary, and also ensured that users of the hazardous chemical substances

Figure 1. Unsecured acetylene and compressed gas cylinders in use

would receive effective education and/or training before handling or using hazardous materials (Dux & Stalzer, 1988). Approximately half of the institutions had a health and safety manual and these institutions had significantly higher health and safety scores as a result.

A training and education program is one of most important preventive measures that can be taken to ensure health and safety in laboratories (Lieckfield & Farrar, 1991), because an adequate training program can prevent or minimize accidents/incidents on an

Figure 2. Storage of chemicals in fume hood

Categories	No. of institutions	Details of questionnaire items	No	%
Fume hood(s)	75	Yes	73	97.3
		No	2	2.7
Fume hood(s) checks and records	73*	Yes	9	12.3
preiodically		No	59	80.8
		Do not know	5	6.9
Storage of chemicals prohibited	73*	Yes	8	11.0
		No	65	89.0
General ventilation systems	75	Air conditoning system	46	61.3
		Natural dilution ventilation	15	20.0
		Fan forced dilution ventilation	50	66.7
Concerns of air quality [†]	75	Temperature	36	48.0
		Humidity	15	20.0
		Air velocity	3	4.0
		Specific contaminants	16	21.3
		General air quality	18	24.0

Table 5. Characteristics of fume hood and general ventilation in laboratories

* A total of 73 institutions had fume hood(s) in their lab among 75 institutions

[†] Multiple responses

initial stage, and also maintain good working environment. Therefore, all levels of staff should attend appropriate training programs containing information on organizational policies, emergency procedures, first aid, accident reporting, location or use of MSDSs, and chemical hygiene plans (Lieckfield & Farrar, 1991; OSHA, 1996; Wawzyniecki & Thompson, 1997). Only few organizations had a training program for safety in the laboratory. This is a reflection of poor laboratory health and safety management. And this is part of the reason why laboratory workers do not have a chance to become aware or improve their knowledge of health and safety issues and may not recognize the importance of health and safety rules in the laboratory.

The KOSHA laboratory safety guideline is proposed to all laboratories and is designed to be incorporated into the practices of workplaces where laboratories are located. Thus, the KOSHA (1999) recommends that all laboratories should keep the guideline in their laboratories. However, only a few had the KOSHA guideline in their laboratories. Most institutions still did not seem to recognize the necessity of keeping and using the guideline in their laboratories.

Incompatible chemicals must be kept segregated from one another or should be separated by fire insulators or space (Standards Australia 2243.10, 1993). Among the 45 respondents, multiple responses were made that most institutions stored their chemicals alphabetically or by random placement. As a result, most organizations inadequately managed their chemicals in the storage area. It is clear that incompatible chemicals should be stored by physical properties or characteristics of chemicals by class (Dux & Stalzer, 1988; Man & Gold, 1993).

In regards to gas cylinder usage, organizations without a gas cylinder room stored gas cylinders beside instruments or in spare corners of the laboratory. For the prevention of cases such as falling or knocking over, all cylinders should be fastened on safe material such as walls or heavy experimental desks, etc (Furr, 1990; Haski et al., 1992; RSC, 1992). However, approximately half of the institutions did not secure their gas cylinders.

Material safety data sheets are essential to recognize the risks associated with hazardous chemicals and gases in the laboratory and to manage adequate procedures for new substances. The Korean Ministry of Labor adopted a MSDS system which is provided through the KOSHA web to improve workplace health and safety. Institutions dealing with hazardous materials and substances should be prepared at all times and keep the MSDSs in readily accessible places and train workers in their laboratories (KOSHA, 1997). Furr (1990), Fullick et al. (1996) and Standards Australian (2243.2, 1997) also described that MSDSs should be readily accessible to laboratory personnel and safety officers in the appropriate work area for cases including various types of hazards, control of risks, treatment required for spills, burns, and other injuries, proper storage procedures, safe handling, and correct labeling. Half of the institutions had MSDSs readily available in their laboratories.

Emergency facilities such as an eyewash fountain, safety shower, and eyewash bottles are essential to minimize injuries of laboratory workers by accidental contacts, splashes, and spills of chemicals on the body. In particular, emergency safety showers and eyewashes are vital safety equipment in chemical laboratories. However, the availability of emergency facilities was too limited to minimize the risk of eye/skin injury from harmful chemical splashes and spills in the provision of effective laboratory emergency operations. Lieckfield and Farrar (1991) and Standards Australian (2982.1 & 2243.1, 1997) recommended that each laboratory should be equipped with at least one shower and eyewash station in a handsfree mode, which should be not more than a 10 meter travel distance or within 30 steps walking distance to such devices from any point in the laboratory in an easily accessible location. It is also said to provide large quantities of water for at least 15 minutes of flushing period with tempered water. On the other hand, the KOSHA guideline (1999) states that safety showers and eyewashes shall be installed within 15 meters or in a 15 to 30 second travel distance. In comparison, the KOSHA guideline requires a reasonable travel distance from the farthest point in the laboratory but the recommended distances do not correspond to any specific type of emergency facility.

A fire involving chemicals and gases in laboratories has potential to become extensive due to its wide usage of highly flammable solvents and gases. Dux and Stalzer (1988) and Standards Australian (2243.1, 1997) recommended that each laboratory should be equipped with more than one type of fire protection equipment or at least one fire extinguisher, together with periodic inspection and maintenance of the equipment to be used at any time. However, many Korean occupational hygiene laboratories did not fulfill such minimum requirements, and not so many institutions periodically inspected and maintained their fire extinguishers. The fire extinguisher inspections were carried out an average of 3 to 4 times per year.

Personal protective equipment is frequently required to protect parts of the human body from various hazards or challenging chemicals. The wearing of appropriate PPE is especially essential for laboratory workers because various hazardous substances such as corrosive and reactive liquids, irritants, and organic toxic vapors exist in laboratories. As a result, half or more institutions preferred providing lab coats, gloves, and respirators whereas eye protection, face shields, footwear, and apron were less often provided. Moreover, the majority of institutions did not have strict rules about wearing PPE at all times and permitted the wearing of open-toed footwear in the laboratory.

The purpose of a fume hood is to eliminate toxic and harmful fumes, gases, and vapors from the laboratory environment by exhausting air. Even though most institutions had installed a fume hood in their laboratories, most of them were not aware of its performance, such as face velocity or cross-draughts. In order to improve these instances of inadequate management of fume hood performance, laboratory institutions established a guideline of checks and records of fume hood performance on a 6 month basis. Nonetheless, most of the institutions did not follow these guidelines and permitted storage of chemicals in the fume hood, not an acceptable practice. This may increase the potential possibility for fire or explosion and may interfere with proper fume hood operation (Dux and Stalzer, 1988). Hence, 'chemicals should never be stored in a fume hood' (Standards Australia 2243.2, 1997; 2243.8, 2001).

General ventilation in the laboratory is needed to eliminate odors, vapors, fumes, and gases from the air which might have an adverse effect on the health of the employees, as well as to provide tempered air for comfort (Furr, 1990; Lieckfield & Farrar, 1991). As a result, many institutions provided air conditioning and/or fan-forced dilution ventilation systems as a general ventilation system. Most laboratory workers were concerned with temperature in their laboratories rather than general air quality, humidity, and specific contaminants produced in the laboratory.

There are some limitations to this study. First, some of the responses about chemical storeroom were false or lacked details; for example, some replied that their institutions had a chemical storeroom when in fact they did not have an adequate chemical storeroom separated, or stored chemicals in general cabinets, drawers, or on shelves without a proper ventilation system. Secondly, the definition of a gas cylinder was not included in the questionnaire, so most institutions seemed to assume that gas cylinders were dissimilar to compressed gas cylinders. Therefore, many institutions did not reply in the gas cylinder section. In addition, the gas cylinder section failed to include questions about the gas system supply, when some institutions had a piped gas system in their laboratories. Accordingly, the results of these two sections in particular may be affected regardless of the researcher's

intentions.

V. Conclusion

This study was intended to identify and assess the status of health and safety in Korean occupational hygiene laboratories with a designated questionnaire which consisted of 12 sections. This study was conducted from July 01 to August 30, 2002.

The results were as follows:

1. As a result of the health and safety performance index for 67 items (one point per item) related to the operation of the occupational hygiene laboratory, the mean scores of the institutions with the health and safety manual, training program, or KOSHA guideline were $42.98 \pm 13.36(p<0.001)$, $50.75 \pm 14.12(p<0.01)$, and $43.58 \pm 11.92(p<0.01)$, respectively.

2. Among 45 respondents in possession of a chemical storage room, 64.8% of the institutions alphabetically stored chemicals in storage areas, 27.8% by class, and 7.4% by random placement.

3. Only 8.0% of the institutions (6 institutions; 2 institutions gave multiple responses) supplied eyewash fountains (2), safety showers (3), and eyewash bottles (3) in their laboratories.

4. A total of 89.0% of the institutions stored their chemicals in the fume hoods.

5. The management of written documents such as MSDSs, fume hood performance records, emergency procedures, and the compliance with KOSHA laboratory guideline was poorly managed and recorded.

6. Overall, most institutions lacked laboratory safety facilities such as emergency equipment, a chemical or gas cylinder storage room, chemical storage cabinets, PPE, fume hoods, and good management practices such as housekeeping.

It is recommended that laboratory workers should wear appropriate personal protective equipment, be trained and educated in using emergency equipment, and take responsibility for maintaining adequate laboratory operations. The laboratory employer should provide a written document system and adequate PPE to be worn by all laboratory personnel, install emergency equipment, develop relevant provisions for the laboratory, and carry out training and education programs. To comply with the above mentioned recommendations, the KOSHA should regularly assess laboratory health and safety in accordance with the KQCP. Korean

laboratories should employ and follow these results to ensure general health and safety in their laboratory institutions.

REFERENCES

- Man ABC, Gold D. Safety and health in the use of chemicals at work: A training manual, Geneva: ILO; 1993. p.9-30.
- Dux JP, Stalzer RF. Managing safety in the chemical laboratory, New York: Van Nostrand Reinhold; 1988. p.23-56.
- Fullick G, Krajniak ER, Barker D. Occupational health and safety in the laboratory, Sydney: Harcourt Brace & Company; 1996. p.49, 90.
- Furr AK. CRC Handbook of laboratory safety, 3rd ed. Boca Raton: CRC Press; 1990. p.19, 61, 249, 368.
- Haski R, Cardilini G, Bartolo W. Laboratory safety manual, North Ryde: CCH Australia Limited; 1992. p. 25-670.
- International Occupational Hygiene Association, What is occupational hygiene? [online] 2007-last update [cited 2007 Jan. 10]; Available from: URL: http://www.ioha.net/.
- Korea Occupational Safety and Health Agency. Korean Industrial Safety and Health Act. [online] 2001 Dec. 31-last update [cited 2002 Aug. 13, b]; Available from: http://kosha.net (In Korean).
- Korea Occupational Safety and Health Agency. Korean Industrial Safety and Health Act-Rule for preparation and maintenance of MSDS. [online] 1997 Oct. 17-last update [cited 2002 Aug. 13]; Available from: URL: http://kosha.net (In Korean).
- Korea Occupational Safety and Health Agency. Korean quality control program. [online] 2001 Jan 27-last update [cited 2002 Aug. 13, a]; Available from: URL: http://home.kosha.net/~yigy/ (In Korean).
- Korea Occupational Safety and Health Agency. Laboratory safety guideline [online] 1999 Dec. 15-last update [cited 2002 Aug.

13]; Available from: URL: http://kosha.net (In Korean).

- Lieckfield RG, Farrar AC. Health and safety factors in designing an industrial hygiene laboratory in Clayton G.D. Clayton F.E. (ed.) Patty's industrial hygiene and toxicology, 4th ed., vol. 1 part A, New York: John Wily & Sons; 1991. p.383-422.
- OSHA Regulations (Standards-29 CFR) Occupational exposure to hazardous chemicals in laboratories-1910. 1450. [online] 1996 Feb.13-last update [cited 2002 Oct. 13]; Available from URL: http://www.osha.gov/.
- Royal Society of Chemistry. Guide to safety practices in chemical laboratories, London: Royal Society of Chemistry; 1992. p.24.
- Standards Australia. AS 2243.10 Safety in laboratories: Part 10-Storage of chemicals. [online] 1993-last up date. [cited 2001 Aug. 08]; Available from: URL: http://www.standards.com.au/.
- Standards Australia. AS/NZS 2243.1 Safety in laboratories: Part 1: General. [online] 1997-last up date [cited 2001 Aug. 08]; Available from: URL: http://www.standards.com.au/.
- Standards Australia. AS/NZS 2243.2 Safety in laboratories: Part 2: Chemical aspects. [online] 1997-last up date [cited 2001 Aug. 08]; Available from: URL: http://www.standards.com.au/.
- Standards Australia. AS/NZS 2243.8 Safety in laboratories: Part 8: Fume cupboards [online] 2001-last up date [cited 2001 Aug. 05]; Available from: URL: http://www.standards.com.au/.
- Standards Australia. AS/NZS 2982.1 Laboratory design: Part 1: General requirements. [online] 1997-last up date [cited 2001 Nov. 23]; Available from: URL: http://www.standards.com.au/.
- Wawzyniecki S, Thompson FM. Laboratory health and safety in DiNardi SR (ed.) The occupational environment-its evaluation and control, Fairfax: AIHA Press; 1997. p. 1225, 1226-1240.
- Yoo KM, Roh YM, Han JG, Won JI. A survey and recommendation on safety and health for occupational health laboratories. Korean Industrial Hygiene Association J 2000; 10: p.150-164 (In Korean).