The Electro-Chemical Treatment for Nitrogen Removal of Metal Finishing Wastewater

질소제거를 위한 금속표면처리폐수의 전기화학적 처리

  • Sim, Joo-Hyun (Department of Environmental Engineering, Inha University) ;
  • Seo, Hyung-Joon (Department of Environmental Engineering, Inha University) ;
  • Kim, Dae-Hwan (Department of Environmental Engineering, Inha University)
  • Received : 2006.07.10
  • Accepted : 2006.11.21
  • Published : 2007.04.30

Abstract

This study examined the nitrate removal efficiency which uses an electrowinning, and also analyzed the nitrate removal efficiency under a variety of operating conditions such as nitrate concentrations, pH, current densities, electrodes, reducing agents in order to determine optimal conditions. In addition, the multi-step electro-chemical process test has been also analyzed. During the electrowinning, the identical Zn-Zn and Pt-Ti electrodes in the insoluble oxidation electrode(Pt) has shown the highest nitrate removal efficiency in the 100 mg $NO_3^{-}$ -N/L concentration. In the concentration of 150 mg $NO_3^{-}$ -N/L, the efficiency of the Zn-Zn electrode were 70~85%, and that of Pt-Ti electrode were 40~50% without any change of pH. In the high concentration of 500 and 1,000 mg $NO_3^{-}$ -N/L, the higher the concentration, the more decrease of its nitrate removal efficiency decreased. However, the energy consumed for nitrogen removal increased when the nitrate concentration was high. As a result of the multi-step electro-chemical process test, We chose the Test 4. Because the first, most of the zinc consumed from 1 step was recovered from over the 2 step. The second, amount of consumption anode decreased with insoluble anode Pt from over the 2 step. And the third, Zn cathode increased the possibility of reusing Zn deposited. In view of the results so far achieved, the multi-step electro-chemical process would be applied to treat nitrogen involved in metal finishing wastewater.

본 연구에서는 전기화학적 처리공정을 이용하여 전극판 종류에 따른 질산성 질소의 농도별 제거효율을 살펴보았고, 여기서 선정된 전극으로 운전조건(pH 변화, 전류밀도, 환원제, 교차전류)을 변화시켜 질산성 질소 제거효율, 에너지소모량에 따른 최적운전조건을 평가하였다. 또한 단일공정에 의한 처리가 아닌 다단계 전기화학적 처리를 통한 질산성 질소 제거 실험을 진행하였다. 100 mg $NO_3^{-}$ -N/L 농도로 실험한 결과에서 동일 전극인 경우 Zn-Zn 전극판, 불용성 산화전극 백금(Pt)인 경우 Pt-Ti 전극에서 높은 질산성 질소 제거효율을 나타내었다. 150 mg $NO_3^{-}$ -N/L에서 Zn-Zn 전극판인 경우 pH 조절없이 전기분해한 결과 70~85%, 불용성 산화전극인 백금(Pt)인 경우 Pt-Ti 전극에서 40~50%의 질산성 질소 제거효율을 나타내었다. 그리고 고농도인 500, 1,000 mg $NO_3^{-}$ -N/L 질산성 질소 제거 실험결과, 농도가 증가할수록 제거효율은 감소하는 경향을 보이지만 에너지 소모량에 대한 질소 제거효율은 증가하였다. 다단계 전기화학적 처리 실험결과, Test 4 조건을 최적의 조건으로 선정하였으며 그 이유는 다음과 같다. 첫 번째, 1단계에서 소모된 Zn 양극의 대부분을 2단계 이후 공정에서 회수하였고, 두 번째, 2단계 이후에서는 불용성 백금을 산화전극으로 사용함으로써 전극 소모 가능성을 줄였으며, 마지막으로 Zn을 환원전극으로 사용함으로써 Zn의 재이용 가능성을 높였다. 따라서, 질소를 함유한 표면처리 폐수 처리에 전기화학적 공정이 적용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 인하대학교 서해연안환경연구센터

References

  1. Lee, H. R., Surface engineering, 1st Ed., hyung seul, Seoul, 401-429(1999)
  2. Gray, N. F., Drinking Water Quality, John Wiley & Sons Inc., New York, 120-122(1994)
  3. Tchobanoglous, G. and Burton, F. L., Wastewater Engineering, 3rd ed., McGraw-Hill, New York, 3-21(1991)
  4. Reynolds, T. D. and Richards, P. A., Unit Operations and Processes in Environmental Engineering, 2nd ed., PWS, Boston, 327-349(1996)
  5. Sim, J. H., Seo, H. J., Cho, K. M. and Shim, J. K., 'Ion Exchange and Electrowinning Studies on Recycling of High-Concentration Nitric Acid Etching Waste Solution,' Kor. Soc. Env. Eng., 26(6), 675-681(2004)
  6. Shin, H. S., Kim, S. H., Jun, Y. K., Kim, S. D. and Kim, Y. K., 'Effect of Electrolysis with Inorganic Coagulant on CODCr Removal of Sewage,' fall Conference on Environmental Engineering, Nov, Gongju(1998)
  7. Kim, S. D., Yoon, J. L., Park, J. S. and Choi, Y. K., 'Optimal pH of Electroylsis System for Removing COD of sewage,' fall Conference on Water Quality, Nov, Gwangju(1997)
  8. Chiang, L. C., Chang, J. E., and Wen. T. C., 'Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate,' Wat. Res., 29(2), 671-678(1995) https://doi.org/10.1016/0043-1354(94)00146-X
  9. Tsai, C. T., Lin, S. T., Shue, Y. C. and Su, P. L., 'Electrolysis of Soluble Organic Matter in Leachate from Landfills,' Wat. Res., 31(12), 3073-3081(1997) https://doi.org/10.1016/S0043-1354(96)00297-7
  10. Baek, W. G. and Park, S. M., Electrochemistry: Science and Technology of Electrode Processes, Chung Moon Gak, Seoul, 341-348(2003)
  11. Szpyrkowicz, L., Naumczyk, J. and Zilio-Grandi, F., 'Application of Electrochemical Process for Tannery Wastewater Treatment,' Toxicol. Environ. Chem., 44(3), 189-202(1994) https://doi.org/10.1080/02772249409358057
  12. U. S. Department of Energy's Los Alamos National Laboratory, http://www.lanl.gov, February(1999)
  13. Chiang, L. C., Chang, J. E. and Tseng, S. C., 'Electrochemical Oxidation Pretreatment of Refractory Organic Pollutants,' Wat. Sci. Tech., 36(2), 123-130(1997)
  14. Mollah, M. Y. A., Schennach, R., Parga, J. R. and Cocke, D. L., 'Electrocoagulation-Science and Applications,' J. Hazardous Materials., B84(1), 29-41(2001)