MISO 고차 ARX 모델 기반의 MIMO 상태공간 모델의 모델인식: 설계와 적용

Identification of MIMO State Space Model based on MISO High-order ARX Model: Design and Application

  • Won, Wangyun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Yoon, Jieun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Kwang Soon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Bongkook (LS Industrial System Co., Ltd.)
  • 투고 : 2006.11.20
  • 심사 : 2006.12.21
  • 발행 : 2007.02.28

초록

부분 최소자승회귀, 균형 잡힌 realization, 균형 잡힌 truncation을 결합함으로써, MIMO 상태공간 모델의 모델인식을 위한 효과적인 방법이 개발되었다. 개발된 방법에서 MIMO 시스템은 고차 ARX 모델로 표현되는 다중 MISO 시스템으로 분해된다. 이 때, ARX 모델의 파라미터는 부분 최소자승회귀에 의해 추정된다. 그 후, realization을 통해 각각의 MISO ARX 전달함수에 대한 MISO 상태공간 모델이 만들어지며, MIMO 상태공간 모델로 결합된다. 최종적으로, 균형 잡힌 realization과 균형 잡힌 truncation을 통해 최소의 균형 잡힌 MIMO 상태공간 모델이 얻어진다. 제안된 방법은 고압 $CO_2$ 용해도 측정 실험 장치의 온도제어를 위한 모델 예측 제어의 설계에 적용되었다.

An efficient method for identification of MIMO state space model has been developed by combining partial least squares (PLS) regression, balanced realization, and balanced truncation. In the developed method, a MIMO system is decomposed into multiple MISO systems each of which is represented by a high-order ARX model and the parameters of the ARX models are estimated by PLS. Then, MISO state space models for respective MISO ARX transfer function are found through realization and combined to a MIMO state space model. Finally, a minimal balanced MIMO state space model is obtained through balanced realization and truncation. The proposed method was applied to the design of model predictive control for temperature control of a high pressure $CO_2$ solubility measurement system.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. Ljung, L., System Identification - Theory for the user, 2nd ed., Prentice-Hall, New Jersey, NJ(1999)
  2. Favoreel, W., Moor, B. D. and Overschee, P. V., 'Subspace State Space System Identification for Industrial Processes,' J. Process Control, 10(2), 149-155(2000) https://doi.org/10.1016/S0959-1524(99)00030-X
  3. Overschee, P. V. and Moor, B. D., 'N4SID: Subspace Algorithms for the Identification of combined deterministic-stochastic Systems,' Automatica, 30(1), 75-93(1994) https://doi.org/10.1016/0005-1098(94)90230-5
  4. Qin, S. J., 'An Overview of Subspace Identification,' Comp. Chem. Eng., 30(10), 1502-1513(2006) https://doi.org/10.1016/j.compchemeng.2006.05.045
  5. Chiuso, A. and Picci, G., 'The Asymptotic Variance of Subspace Estimates,' J. Econometrics, 118(1), 257-291(2004) https://doi.org/10.1016/S0304-4076(03)00143-X
  6. Jia, C., Rohani, S. and Jutan, A., 'FCC Unit Modeling, Identification and Model Predictive Control, a Simulation Study,' Chem. Eng. Proc., 42(4), 311-325(2003) https://doi.org/10.1016/S0255-2701(02)00055-7
  7. Lee, K. S., Eom, Y., Chung, J. W., Choi, J. and Yang, D., 'A Control-relevant Model Reduction Technique for Nonlinear Systems, ' Comp. Chem. Eng., 24(2), 309-315(2000) https://doi.org/10.1016/S0098-1354(00)00465-8
  8. Sima, V., Sima, D. M. and Huffle, S. V., 'High-Performance Numerical Algorithms and Software for Subspace-based Linear Multivariable System Identification,' J. Comp. Appl. Math., 170(2), 371-397(2004) https://doi.org/10.1016/j.cam.2003.12.046
  9. Abdi, H., 'Partial Least Squares (PLS) Regression,' Enc. Soc. Sci. Res. Meth., Thousand Oaks (CA), TO(2003)
  10. Helmke, U. and Huper, K., 'A Jacobi-type Method for Computing Balanced Realization', Sys. Cont. Lett., 39(1), 19-30(2000) https://doi.org/10.1016/S0167-6911(99)00079-1
  11. Chen, C. T., Linear System Theory and Design, 3rd ed., OXFORD, New York, NY(1999)
  12. Astrom, K. J. and Wittenmark, B., Computer-controlled systems - theory and design, 3rd ed., Prentice-Hall, New Jersey, NJ(1997)
  13. Won, W., Lee, K. S., Lee, B., Lee, S. and Lee, S., 'Model Predictive Control of Condensate Recycle Process in a Cogeneration Power Station: I. Controller Design and Numerical Application,' Proceedings of SICE-ICASE International Joint Conference 2006, Busan, Korea, 178(2006)
  14. Zhou, K., Doyle, J. C. and Glover, K., Robust and Optimal Control, Prentice-Hall, New Jersey, NJ(1996)