고광도와 질소 결핍이 Haematococcus pluvialis의 색소 생합성에 미치는 영향

Influence of High Light and Nitrate Deprivation on the Carotenoid Biosynthesis in Haematococcus pluvialis

  • Yun, Ji-Hyun (Department of Life Science, Hanyang University) ;
  • Kwak, In-Kyu (Department of Life Science, Hanyang University) ;
  • Jin, Eon-Seon (Department of Life Science, Hanyang University)
  • 발행 : 2007.12.28

초록

H. pluviails는 고광도와 질소 결핍 배지 조건에서 ketocarotenoid의 일종인 astaxanthin을 다량 축적하는 녹조류이다. 스트레스가 없는 조건에서 키운 green cell과 astaxanthin이 합성된 red cell을 HPLC를 통해 비교해 본 결과 각 색소의 양이 변화하는 것을 볼 수 있었다. 여러 ester 형태의 astaxanthin이 생합성 되고, zeaxanthin이 늘어난 반면, lutein과 ${\beta}$-carotene은 감소하였다. 또한 total chlorophyll 양이 줄어드는 대신 total carotenoid의 양이 늘어남을 보였다. H. pluvilalis에서 찾아낸 astaxanthin 생합성 경로에 있는 carotenoid hydroxylase, phytoene desaturase, isopentenyl pyrophosphate isomerase, ${\beta}$-carotene ketolase 유전자는 음성대조군인 chloroplast chlorophyll a-b binding protein와는 달리cell이 성장하기 좋은 조건의 상태보다 astaxanthin을 생합성하기 위해 고광도의 스트레스를 받았을 때 더 높은 발현양상을 보이는 것을 확인할 수 있었다.

The unicellular green alga, Haematococcus pluvialis used as a biological production system for astaxanthin. It accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various environmental stress such as active oxygen species and high light intensities. To induce astaxanthin biosynthesis of H. pluvialis, cells were incubated in either nitrate free at $25^{\circ}C$ under continuous high light intensity ($1,000\;{\mu}mol$ photons $m^{-2}s^{-1}$) for 2 days or high light stress only. Expressions of astaxanthin biosynthetic genes such as carotenoid hydroxylase, IPP isomerase and ${\beta}$-carotene ketolase were monitored under different culture conditions by using real time RT-PCR. All the subjected genes increased their expression under highlight and N-deprivation condition where a large amount of astaxanthin was accumulated.

키워드

참고문헌

  1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts, Polyphenoxidasein Beta vulgaris. Plant Physiol. 24:1-15 https://doi.org/10.1104/pp.24.1.1
  2. Bartley, G. E. and P. A. Scolink. 1995. Pigment for photoprotection, visual attraction, and human health. Plant Cell. 7: 1027-1038 https://doi.org/10.1105/tpc.7.7.1027
  3. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Plant Physiol. 108: 111-117 https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  4. GrUnewald, K., M. Eckert., J. Hirschberg. and C. Hagen. 2000. Phytoene desaturase is localized exclusively in the chloroplast and upregulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, chlorophyceae). Plant Physiol. 122: 1261-1268 https://doi.org/10.1104/pp.122.4.1261
  5. Guerin, M., M. E. Huntley., and M. Olaizola. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210-216 https://doi.org/10.1016/S0167-7799(03)00078-7
  6. Huang, J. C., F. Chen. and G. Sandmann. 2006. Stressrelated differential expression of multiple ${\beta}-$ carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. Journal of Biotechnol. 122: 176-185 https://doi.org/10.1016/j.jbiotec.2005.09.002
  7. Jin, E. S., B. Feth. and A. Metis. 2003. A Mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biothecnol. Bioeng. 81: 115-124 https://doi.org/10.1002/bit.10459
  8. Jin, E. S., C. G. Lee, and J. E. W. Polle. 2006. Secondary carotenoid accumulation in Haematococcus (chlorophyceae) biosynthesis, regulation and biotechnology. J. Microbiol. Biotechnol. 16: 821-831
  9. Kobayashi, M., Y. Kurimura., T. Kakizono., N. Nishio. and Y. Tsuji. 1997. Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 84: 94-97 https://doi.org/10.1016/S0922-338X(97)82794-8
  10. Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotech. Biopro. Eng. 8: 322-330 https://doi.org/10.1007/BF02949275
  11. Linden, H. 1999. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim. Biophys. Acta. 1446: 203-212 https://doi.org/10.1016/S0167-4781(99)00088-3
  12. Lorenz, R. T. and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167 https://doi.org/10.1016/S0167-7799(00)01433-5
  13. Lotan, T. and J. Hirschberg. 1995. Cloning and expression in Escherichia coli of the gene encoding ${\beta}-4-C-oxygenase$, that converts ${\beta}-carotene$ to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS. Lett. 364: 125-128 https://doi.org/10.1016/0014-5793(95)00368-J
  14. Melis, A., M. Spangfort. and B. Andersson. 1987. Lightabsorption and electrontransport balance between PSII and PSI in spinach chloroplasts. Photochem Photobiol. 45: 129-136 https://doi.org/10.1111/j.1751-1097.1987.tb08413.x
  15. Miao, F., D. Lu, M. Zeng, and Y. Li. 2006. Charaterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal. Biochem. 352:176-181 https://doi.org/10.1016/j.ab.2006.03.006
  16. Olaizola, M. 2003. Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomol. Eng. 20: 459-466 https://doi.org/10.1016/S1389-0344(03)00076-5
  17. Steinbrenner, J. and H. Linden. 2002. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: Regulation by photosynthetic redox control. Plant Mol. Bio. 52: 343-356 https://doi.org/10.1023/A:1023948929665
  18. Sun, Z., F. X. Cunningham. and E. Gantt. 1998. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc. Natl. Acad. Sci. USA 95: 11482-11488