References
- Alexander, E., D. Pham, and T. R. Steck. 1999. The viablebut- nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl. Environ. Microbiol. 65: 3754-3756
- Altomare, C., W. A. Norvell, T. Bjorkman, and G. E. Harman. 1999. Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 65: 2926-2933
- Aurelio, C., R. Musetti, and L. Nazia. 2004. Atomic force microscopy of unculturable bacteria, pp. 101-106. In A. Mendez-Vilas and L. Labajos-Broncano (eds.), Current Issues on Multidisciplinary Microscopy Research and Education. FORMATEX Microscopy book series (No.2), FORMATEX
- Baldani, J. I. and V. I. D. Baldani. 2005. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. An. Acad. Bras. Cienc. 77: 549-579 https://doi.org/10.1590/S0001-37652005000300014
- Cavalcante, V. A. and J. Döbereiner. 1988. A new acidtolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108: 23-31 https://doi.org/10.1007/BF02370096
- Fasim, F., N. Ahmed, R. Parsons, and G. M. Gadd. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 213: 1- 6 https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
- Fomina, M., S. Hillier, J. M. Charnock, K. Melville, I. J. Alexander, and G. M. Gadd. 2005. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl. Environ. Microbiol. 7: 371- 381
- Gillis, M., K. Kersters, B. Hoste, D. Janssens, R. M. Kroppenstedt, M. P. Stephan, K. R. S. Teixeira, J. Döbereiner, and J. De Ley. 1989. Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int. J. Syst. Bacteriol. 39: 361-364 https://doi.org/10.1099/00207713-39-3-361
- Grey, B. and T. R. Steck. 2001. Concentrations of copper thought to be toxic to Escherichia coli can induce the viable but nonculturable condition. Appl. Environ. Microbiol. 67: 5325-5327 https://doi.org/10.1128/AEM.67.11.5325-5327.2001
- Ho, E. 2004. Zinc deficiency, DNA damage and cancer risk. J. Nutr. Biochem. 15: 572-578 https://doi.org/10.1016/j.jnutbio.2004.07.005
- Krasil'nikov, N. A. 1958. Soil Microorganisms and Higher Plants, p. 474. Academy of Sciences of USSR
- Leigh-Emma, B. 2000. Heavy metal resistance in the genus Gluconobacter. M.Sc. (Biology) Thesis, Faculty of Virginia Tech
- Lodewyckx, C., M. Mergeay, J. Vangronsvels, H. Clijsters, and D. van der Lelie. 2002. Isolation, characterization and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calminaria. Int. J. Phytoremed. 4: 101-115 https://doi.org/10.1080/15226510208500076
- Luna, M. F., C. E. Bernardelli, M. L. Galar, and J. L. Boiardi 2006. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3. Curr. Microbiol. 52: 163-168 https://doi.org/10.1007/s00284-005-4563-0
- Madhaiyan, M., S. Poonguzhali, K. Hari, V. S. Saravanan, and T. M. Sa. 2006. Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic. Biochem. Physiol. 84: 143-154 https://doi.org/10.1016/j.pestbp.2005.06.004
- Mertens, J., D. Springael, I. De Troyer, K. Cheyns, P. Wattiau, and E. Smolders. 2006. Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environ. Microbiol. 8: 2170-2178 https://doi.org/10.1111/j.1462-2920.2006.01100.x
- Moffett, B. F., F. A. Nicholson, N. C. Uwakwe, J. Brian, B. J. Chambers, J. A. Harris, and T. C. J. Hill. 2003. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 43: 3-19
- Muthukumarasamy, R., G. Revathi, and P. Loganathan. 2002. Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (Syn. Gluconacetobacter diazotrophicus). Plant Soil 243: 91-102 https://doi.org/10.1023/A:1019963928947
- Na, B. K., B. N. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
- Nies, D. H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750 https://doi.org/10.1007/s002530051457
- Poonguzhali, S., M. Madhaiyan, M. Thangaraju, J. H. Ryu, K. Y. Chung, and T. M. Sa. 2005. Effects of co-cultures, containing N fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L) R. Br.) and Blackgram (Vigna mungo L.). J. Microbiol. Biotechnol. 15: 903-908
- Quan, Z. X., S. K. Rhee, J. W. Bae, J. H. Baek, Y. H. Park, and S. T. J. Lee. 2006. Bacterial community structure in activated sludge reactors treating free or metal-complexed cyanides. J. Microbiol. Biotechnol. 16: 232-239
- Rawlings, D. E. 2002. Heavy metal mining using microbes. Annu. Rev. Microbiol. 56: 65-91 https://doi.org/10.1146/annurev.micro.56.012302.161052
- Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66 :1794-1798 https://doi.org/10.1016/j.chemosphere.2006.07.067
- Shin, W. S. J. H. Ryu, S. J. Choi, C. W. Kim, R. Gadagi, M. Madhaiyan, S. Seshadri, J. Chung, and T. M. Sa. 2005. Solubilization of hardly soluble phosphates and growth promotion of maize (Zea mays l.) by Penicillium oxalicum isolated from rhizosphere. J. Microbiol. Biotechnol. 15: 1273-1279
- Valle, B. L. and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiol. Rev. 73: 79-118 https://doi.org/10.2466/pr0.1993.73.1.79
- Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54: 237-243 https://doi.org/10.1007/s00284-006-0451-5