Purification and Characterization of a New Fibrinolytic Enzyme of Bacillus licheniformis KJ-31, Isolated from Korean Traditional Jeot-gal

  • Hwang, Kyung-Ju (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Choi, Kyoung-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Myo-Jeong (Food Research Institute and School of Food and Life Science, and Biohealth Products Research Center, Inje University) ;
  • Park, Cheon-Seok (Department of Food Science and Biotechnology and Institute of Life Sciences and Resources, KyungHee University) ;
  • Cha, Jae-Ho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Published : 2007.09.30

Abstract

Jeot-gal is a traditional Korean fermented seafood and has long been used for seasoning. We isolated 188 strains from shrimp, anchovy, and yellow corvina Jeot-gal, and screened sixteen strains that showed strong fibrinolytic activities on a fibrin plate. Among those strains, the strain that had the largest halo zone was chosen and identified as Bacillus licheniformis by using 16S rDNA sequencing and an API CHB kit. The fibrinolytic activity of Bacillus licheniformis was characterized and designated as bpKJ-31. The active component of bpKJ-31 was identified as a 37 kDa protein, designated bacillopeptidase F, by internal peptide mapping and N-terminal sequencing. The optimum activity of bpKJ-31 was shown at pH 9 and $40^{\circ}C$, with a chromogenic substrate for plasmin. It had high degrading activity for the $B{\beta}$-chain and $A{\alpha}$-chain of fibrin(ogen), and also acted on thrombin, but not skim milk and casein. The amidolytic activity of bpKJ-31 was inhibited by 1 mM phenylmethanesulfonyl fluoride, but 1 mM EDTA did not affect the enzyme activity, indicating that bpKJ-31 is an alkaline serine protease, like a plasmin. The bpKJ-31 showed approximately 14.3% higher fibrinolytic activity than the plasmin. These features of bpKJ-31 make it attractive as a health-promoting biomaterial.

Keywords

References

  1. Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Choi, N.-S., S.-K. Ju, T. Y. Lee, K.-S. Yoon, K.-T. Chang, P. J. Maeng, and S.-H. Kim. 2005. Miniscale identification and characterization of subtilisins from Bacillus sp. strains. J. Microbiol. Biotechnol. 15: 537-543
  4. Choi, N., K. Yoo, J. Hahm, K. Yoon, K. Chang, B. Hyun, P. Maeng, and S. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: Produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 15: 72-79
  5. Choi, N.-S., K.-H. Yoo, K.-S. Yoon, K.-T. Chang, P. J. Maeng, and S.-H. Kim. 2005. Identification of recombinant subtilisins. J. Microbiol. Biotechnol. 15: 35-39
  6. Collen, D. and H. R. Lijnen. 1994. Staphylokinase, a fibrinspecific plasminogen activator with therapeutic potential? Blood 84: 680-686
  7. Collen, D. and H. R. Lijnen. 2004. Tissue-type plasminogen activator: A histological perspective and personal account. J. Thromb. Haemost. 2: 541-546 https://doi.org/10.1111/j.1538-7933.2004.00645.x
  8. Duffy, M. J. 2002. Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: From pilot to level 1 evidence studies. Clin. Chem. 48: 1194-1197
  9. Fujita, M., K. Nomura, K. Hong, Y. Ito, A. Asada, and S. Nishimuro. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197: 1340-1347 https://doi.org/10.1006/bbrc.1993.2624
  10. Jeong, Y., J. Kim, S. Gal, J. Kim, S. Park, K. Chung, Y. Kim, B. Kim, and W. Joo. 2004. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1. World J. Microbiol. Biotechnol. 20: 711-717 https://doi.org/10.1007/s11274-003-4514-5
  11. Kim, H., G. Kim, and D. Kim. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84: 307-312 https://doi.org/10.1016/S0922-338X(97)89249-5
  12. Kim, S. and N. Choi. 2000. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Biosci. Biotechnol. Biochem. 64: 1722-1725 https://doi.org/10.1271/bbb.64.1722
  13. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62: 2482-2488
  14. Ko, J., J. Yan, L. Zhu, and Y. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 137: 65- 74 https://doi.org/10.1016/j.cca.2003.11.008
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680- 685 https://doi.org/10.1038/227680a0
  16. Lee, J.-S., H.-S. Baik, and S.-S. Park. 2006. Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella fraxinea. J. Microbiol. Biotechnol. 16: 264-271
  17. Lee, S., J. Kim, K. Sapkota, M. Shen, S. Kim, H. Chun, J. Yoo, H. Choi, M. Kim, and S. Kim. 2005. Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr. Purif. 43: 10-17 https://doi.org/10.1016/j.pep.2005.05.004
  18. Lee, S. K., D. H. Bae, T. J. Kwon, S. B. Lee, H. H. Lee, J. H. Park, S. Heo, and M. G. Johnson. 2001. Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11: 845-852
  19. Matsubara, K., K. Hori, Y. Matsuura, and K. Miyazawa. 1999. A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52: 993-999 https://doi.org/10.1016/S0031-9422(99)00356-8
  20. Matsubara, K., K. Hori, Y. Matsuura, and K. Miyazawa. 2000. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp. Biochem. Physiol. Biochem. Mol. Biol. 125: 137-143 https://doi.org/10.1016/S0305-0491(99)00161-3
  21. Mihara, H., H. Sumi, and T. Yoneta. 1991. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn. J. Physiol. 41: 461-472 https://doi.org/10.2170/jjphysiol.41.461
  22. Omura, K., M. Hitosugi, K. Kaketani, X. Zhu, H. Maeda, and S. Tokudome. 2004. Fibrinolytic and anti-thrombotic effect of NKCP, the protein layer from Bacillus subtilis (natto). Biofactors 22: 185-187 https://doi.org/10.1002/biof.5520220138
  23. Omura, K., M. Hitosugi, X. Zhu, M. Ikeda, and H. Maeda. 2005. A newly derived protein from Bacillus subtilis natto with both anti-thrombotic and fibrinolytic effects. J. Pharmacol. Sci. 99: 247-251 https://doi.org/10.1254/jphs.FP0050408
  24. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829- 835
  25. Park, S. K. and D.-H. Bae. 2006. Film-forming properties of proteinaceous fibrous material produced from soybean fermented by Bacillus natto. J. Microbiol. Biotechnol. 16: 1053-1059
  26. Peng, Y., Q. Huang, R. Zhang, and Y. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from Douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. Biochem. Mol. Biol. 134: 45-52 https://doi.org/10.1016/S1096-4959(02)00183-5
  27. Peng, Y., X. Yang, and Y. Zhang. 2005. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Appl. Microbiol. Biotechnol. 69: 126-132 https://doi.org/10.1007/s00253-005-0159-7
  28. Rodrigues, R. C. and R. C. Tait. 1988. Recombinant DNA Techniques: An Introduction. Benjamin/Cummins Publishing Co. Inc. pp.162-163
  29. Roitsch, C. A. and J. H. Hageman. 1983. Bacillopeptidase F: Two forms of a glycoprotein serine protease from Bacillus subtilis 168. J. Bacteriol. 155: 145-152
  30. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibinolytic enzyme (nattokinase) in the vegetable cheese natto - a typical and popular soybean food in the Japanese diet. Experientia 42: 1110-1111
  31. Sumi, H., H. Hamada, K. Nakanishi, and H. Hiratani. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84: 139-143 https://doi.org/10.1159/000205051
  32. Wang, J., M. Wang, and Y. Wang. 1999. Purification and characterization of a novel fibrinolytic enzyme from Streptomyces spp. Chin. J. Biotechnol. 15: 83-89
  33. Wang, C., B. Ji, B. Li, R. Nout, P. Li, H. Ji, and L. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33: 750-758 https://doi.org/10.1007/s10295-006-0111-6
  34. Yoon, K., E. Lee, and S. Kim. 2003. Purification and characterization of a fibrinolytic enzyme produced from Bacillus amyloliquefaciens K42 isolated from Korean soy sauce. Kor. J. Microbiol. Biotechnol. 31: 284-291