Requirement of Fur for the Full Induction of dps Expression in Salmonella enterica Serovar Typhimurium

  • Yoo, Ah-Young (Division of Biological Sciences, Pusan National University) ;
  • Kim, Sam-Woong (Division of Biological Sciences, Pusan National University) ;
  • Yu, Jong-Earn (Division of Biological Sciences, Pusan National University) ;
  • Kim, Young-Hee (Division of Biological Sciences, Pusan National University) ;
  • Cha, Jae-Ho (Division of Biological Sciences, Pusan National University) ;
  • Oh, Jeong-Il (Division of Biological Sciences, Pusan National University) ;
  • Eo, Seong-Kug (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, John-Hwa (College of Veterinary Medicine, Chonbuk National University) ;
  • Kang, Ho-Young (Division of Biological Sciences, Pusan National University)
  • Published : 2007.09.30

Abstract

The Dps protein, which is overexpressed in harsh environments, is known to playa critical role in the protection of DNA against oxidative stresses. In this study, the roles of Fur in the expression of the dps gene in Salmonella and the protection mechanisms against oxidative stress in Salmonella cells preexposed to iron-stress were investigated. Two putative Fur boxes were predicted within the promoter region of the S. typhimurium dps gene. The profile of dps expression performed by the LacZ reporter assay revealed growth-phase dependency regardless of iron-status under the culture conditions. The fur mutant, $_X4659$, evidenced a reduced level of ${\beta}$-galactosidase as compared to the wild-type strain. The results observed after the measurement of the Dps protein in various Salmonella regulatory mutants were consistent with the results acquired in the reporter assay. This evidence suggested that Fur performs a function as a subsidiary regulator in the expression of dps. The survival ability of Salmonella strains after exposure to oxidative stress demonstrated that the Dps protein performs a pivotal function in the survival of stationary-phase S. typhimurium against oxidative stress. Salmonella cells grown in iron-restricted condition required Dps for full protection against oxidative stress. The CK24 (${\Delta}dps$) cells grown in iron-replete condition survived at a rate similar to that observed in the wild-type strain, thereby suggesting the induction of an unknown protection mechanism(s) other than Dps in this condition.

Keywords

References

  1. Almiron, M., A. J. Link, D. Furlong, and R. Kolter. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6: 2646- 2654 https://doi.org/10.1101/gad.6.12b.2646
  2. Andrews, S. C., A. K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol Rev. 27: 215-237 https://doi.org/10.1016/S0168-6445(03)00055-X
  3. Bagg, A. and J. B. Neilands. 1987. Ferric uptake regulation acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26: 5471-5477 https://doi.org/10.1021/bi00391a039
  4. Buchmeier, N. A., C. J. Lipps, M. Y. So, and F. Heffron. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7: 933-936 https://doi.org/10.1111/j.1365-2958.1993.tb01184.x
  5. De Lorenzo, V., S. Wee, M. Herrero, and J. B. Neilands. 1987. Operator sequences of the aerobactin operon of plasmid ColB-K3 binding the ferric uptake regulation (fur) repressor. J. Bacteriol. 169: 2624-2630 https://doi.org/10.1128/jb.169.6.2624-2630.1987
  6. Dubrac, S. and D. Touati. 2000. Fur positive regulation of iron superoxide dismutase in Escherichia coli: Functional analysis of the sodB promoter. J. Bacteriol. 182: 3802- 3808 https://doi.org/10.1128/JB.182.13.3802-3808.2000
  7. Edwards, R. A., L. H. Keller, and D. M. Schifferli. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207: 149-157 https://doi.org/10.1016/S0378-1119(97)00619-7
  8. Fields, P. I., V. Swansom, C. G. Haidaris, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 5189-5193
  9. Gay, P., D. le Coq, M. Steinmetz, T. Berkelman, and C. I. Kado. 1985. Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J. Bacteriol. 164: 918-921
  10. Greenberg, J. T. and B. Demple. 1989. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J. Bacteriol. 171: 3933-3999 https://doi.org/10.1128/jb.171.7.3933-3939.1989
  11. Groote, M. A., U. A. Ochsner, M. U. Shiloh, C. Hathan, J. M. McCord, M. C. Dinauer, S. J. Libby, A. Vazqurez- Torres, Y. Xu, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94: 13997-14001 https://doi.org/10.1073/pnas.94.25.13997
  12. Gulig, P. A. and R. Curtiss III. 1987. Plasmid-associated virulence of Salmonella typhimurium. Infect. Immun. 55: 2891-2901
  13. Halliwell, B. and J. M. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. J. Biochem. 219: 1-14 https://doi.org/10.1042/bj2190001
  14. Hanke, K. 1981. Regulation of ferric iron transport in Escherichia coli K12: Isolation of constitutive mutant. Mol. Gen. Genet. 182: 288-292 https://doi.org/10.1007/BF00269672
  15. Hildalgo, E. and B. Demple. 1996. Adaptive response to oxidative stress: The soxRS and oxyR regulons, pp. 435- 452. In E. C. C. Lin and A. S. Lynch (eds). Regulation of Gene Expression in Escherichia coli. RG Landes, Austin, TX
  16. Jung, S. J., H.-J. Kim, and H.-Y. Kim. 2005. Quantitative detection of Salmonella typhimurium contamination in milk, using real-time PCR. J. Microbiol. Biotechnol. 15: 1353- 1358
  17. Kang, H. Y., J. Srinivasan, and R. Curtiss III. 2002. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect. Immun. 70: 1739-1749 https://doi.org/10.1128/IAI.70.4.1739-1749.2002
  18. Kim, D. S., Y. I. Park, H. B. Lee, and Y. J. Kim. 2005. Efficient expression of a carbon starvation promoter activity under nutrient limited chemostat culture. J. Microbiol. Biotechnol. 15: 678-682
  19. Lacour, S. and P. Landini. 2004. $\sigma^{S}$-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of ${\sigma}^{S}$-dependent genes and identification of their promoter sequences. J. Bacteriol. 186: 7186-7195 https://doi.org/10.1128/JB.186.21.7186-7195.2004
  20. Lee, Y. H., E. Y. Ahn, S. S. Park, E. L. Madsen, C. O. Jeon, and W. J. Park. 2006. Construction of reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390
  21. Libby, S. J., W. Goebel, A. Ludwig, N. Buchmeier, F. C. Fang, D. G. Guiney, J. G. Songer, and F. Heffron. 1994. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc. Natl. Acad. Sci. USA 91: 489- 493
  22. Lieu, H. Y., H. S. Song, S. N. Yang, J. H. Kim, H. J. Kim, Y. D. Park, and H. Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
  23. Loewen P. C., B. Hu, J. Strutinsky, and R. Sparling. 1998. Regulation in the rpoS regulon of Escherichia coli. Can. J. Microbiol. 44: 707-717 https://doi.org/10.1139/cjm-44-8-707
  24. Martinez, A. and R. Kolter. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179: 5188-5194 https://doi.org/10.1128/jb.179.16.5188-5194.1997
  25. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  26. Nair, S. and S. E. Finkel. 2004. Dps protects cells against multiple stresses during stationary phase. J. Bacteriol. 186: 4192-4198 https://doi.org/10.1128/JB.186.13.4192-4198.2004
  27. Roland, K., R. Curtiss III, and D. Sizemore. 1999. Construction and evaluation of a $\nabla$cya $\nabla$crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent air sacculitis in chickens. Avian Dis. 43: 429-441 https://doi.org/10.2307/1592640
  28. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  29. Touati, D. 2000. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373: 1-6 https://doi.org/10.1006/abbi.1999.1518
  30. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354
  31. Tsolis, R. M., A. J. Baumler, and F. Heffron. 1995. Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect. Immun. 63: 1739-1744
  32. Valdivia, R. H. and S. Falkow. 1996. Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22: 367-378 https://doi.org/10.1046/j.1365-2958.1996.00120.x
  33. Wackett, L. P., W. H. Orme-Johnson, and C. T. Walsh. 1989. Transition metal enzymes in bacterial metabolism, pp. 165- 206. In T. J. Beveridge and R. J. Doyle (eds.), Metal Irons and Bacteria. John Wiley & Sons, Inc., New York, N.Y
  34. Zhao, G., P. Ceci, A. Ilari, L. Giangiacomo, T. M. Laue, E. Chiancone, and N. D. Chasteen. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. J. Biol. Chem. 277: 27689-27696 https://doi.org/10.1074/jbc.M202094200