Burkholderia Diversity and Versatility: An Inventory of the Extracellular Products

  • Published : 2007.09.30

Abstract

The Burkholderia genus consists of over 40 Gram-negative, ${\beta}$-proteobacteria species that occupy remarkably diverse ecological niches. This genus contains species pathogenic to human, animals, and plants, as well as species involved in promoting plant growth and biodegradation of pollutants. This is largely explained by the extraordinary versatility of Burkholderia, as reflected by the remarkable diversity of extracellular products released by these bacteria. We exhaustively surveyed the extracellular enzymes, siderophores, toxins, antimicrobials, and other secondary metabolites produced by the members of this very diverse genus. Available information on regulation, especially quorum sensing mechanisms, and secretion is highlighted.

Keywords

References

  1. Aamand, J. L., A. H. Hobson, C. M. Buckley, S. T. Jorgensen, B. Diderichsen, and D. J. McConnell. 1994. Chaperone-mediated activation in vivo of a Pseudomonas cepacia lipase. Mol. Gen. Genet. 245: 556-564
  2. Achouak, W., R. Christen, M. Barakat, M. H. Martel, and T. Heulin. 1999. Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int. J. Syst. Bacteriol. 49: 787-794 https://doi.org/10.1099/00207713-49-2-787
  3. Agnoli, K., C. A. Lowe, K. L. Farmer, S. I. Husnain, and M. S. Thomas. 2006. The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function sigma factor which is a part of the Fur regulon. J. Bacteriol. 188: 3631-3644 https://doi.org/10.1128/JB.188.10.3631-3644.2006
  4. Aguilar, C., I. Bertani, and V. Venturi. 2003. Quorumsensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl. Environ. Microbiol. 69: 1739- 1747 https://doi.org/10.1128/AEM.69.3.1739-1747.2003
  5. Aguilar, C., A. Friscina, G. Devescovi, M. Kojic, and V. Venturi. 2003. Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J. Bacteriol. 185: 6456- 6462 https://doi.org/10.1128/JB.185.21.6456-6462.2003
  6. Ait Barka, E., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72: 7246-7252 https://doi.org/10.1128/AEM.01047-06
  7. Alice, A. F., C. S. Lopez, C. A. Lowe, M. A. Ledesma, and J. H. Crosa. 2006. Genetic and transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in the human pathogen Burkholderia pseudomallei K96243. J. Bacteriol. 188: 1551-1566 https://doi.org/10.1128/JB.188.4.1551-1566.2006
  8. Arima, K., H. Imanaka, M. Kousaka, A. Fukuda, and G. Tamura. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575-576 https://doi.org/10.1271/bbb1961.28.575
  9. Ashdown, L. R. and J. M. Koehler. 1990. Production of hemolysin and other extracellular enzymes by clinical isolates of Pseudomonas pseudomallei. J. Clin. Microbiol. 28: 2331-2334
  10. Azegami, K., K. Nishiyama, and H. Kato. 1988. Effect of iron limitation on 'Pseudomonas plantarii' growth and tropolone and protein production. Appl. Environ. Microbiol. 54: 844-847
  11. Baldwin, A., P. A. Sokol, J. Parkhill, and E. Mahenthiralingam. 2004. The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect. Immun. 72: 1537-1547 https://doi.org/10.1128/IAI.72.3.1537-1547.2004
  12. Barelmann, I., J. M. Meyer, K. Taraz, and H. Budzikiewicz. 1996. Cepaciachelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia. Z. Naturforsch. C J. Biosci. 51: 627-630
  13. Bell, S. C. and J. M. Turner. 1973. Iodinin biosynthesis by a Pseudomonad. Biochem. Soc. Trans. 1: 751-753 https://doi.org/10.1042/bst0010751
  14. Bevivino, A., S. Tabacchioni, L. Chiarini, M. V. Carusi, M. Del Gallo, and P. Visca. 1994. Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140(Pt 5): 1069-1077 https://doi.org/10.1099/13500872-140-5-1069
  15. Bevivino, A., C. Dalmastri, S. Tabacchioni, L. Chiarini, M. L. Belli, S. Piana, A. Materazzo, P. Vandamme, and G. Manno. 2002. Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: Genomovar status and distribution of traits related to virulence and transmissibility. J. Clin. Microbiol. 40: 846-851 https://doi.org/10.1128/JCM.40.3.846-851.2002
  16. Bisacchi, G. S., D. R. Hockstein, W. H. Koster, W. L. Parker, M. L. Rathnum, and S. E. Unger. 1987. Xylocandin: A new complex of antifungal peptides. II. Structural studies and chemical modifications. J. Antibiot. (Tokyo) 40: 1520- 1529 https://doi.org/10.7164/antibiotics.40.1520
  17. Blumer, C. and D. Haas. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 173: 170-177 https://doi.org/10.1007/s002039900127
  18. Boekema, B. K., A. Beselin, M. Breuer, B. Hauer, M. Koster, F. Rosenau, K. E. Jaeger, and J. Tommassen. 2007. Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl. Environ. Microbiol. 73: 3838-3844 https://doi.org/10.1128/AEM.00097-07
  19. Bramer, C., P. Vandamme, L. da Silva, J. Gomez, and A. Steinbuchel. 2001. Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int. J. Syst. Evol. Microbiol. 51: 1709-1713 https://doi.org/10.1099/00207713-51-5-1709
  20. Brett, P. J., D. DeShazer, and D. E. Woods. 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48: 317-320 https://doi.org/10.1099/00207713-48-1-317
  21. Burkhead, K. D., D. A. Schisler, and P. J. Slininger. 1994. Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl. Environ. Microbiol. 60: 2031-2039
  22. Burkholder, W. H. 1950. Sour skin, a bacterial rot of onions bulbs. Phytopathology 40: 115-117
  23. Caballero-Mellado, J., L. Martinez-Aguilar, G. Paredes- Valdez, and P. E. Santos. 2004. Burkholderia unamae sp. nov., an $N_2$-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54: 1165-1172 https://doi.org/10.1099/ijs.0.02951-0
  24. Cain, C. C., A. T. Henry, R. H. Waldo 3rd, L. J. Casida Jr., and J. O. Falkinham 3rd. 2000. Identification and characteristics of a novel Burkholderia strain with broadspectrum antimicrobial activity. Appl. Environ. Microbiol. 66: 4139-4141 https://doi.org/10.1128/AEM.66.9.4139-4141.2000
  25. Cartwright, D. K., W. S. Chilton, and D. M. Benson. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol. 43: 211-216 https://doi.org/10.1007/BF00172814
  26. Carvalho, A. P., G. M. Ventura, C. B. Pereira, R. S. Leao, T. W. Folescu, L. Higa, L. M. Teixeira, M. C. Plotkowski, V. L. Merquior, R. M. Albano, and E. A. Marques. 2007. Burkholderia cenocepacia, B. multivorans, B. ambifaria, and B. vietnamiensis isolates from cystic fibrosis patients have different profiles of exoenzyme production. APMIS 115: 311-318 https://doi.org/10.1111/j.1600-0463.2007.apm_603.x
  27. Chain, P. S., V. J. Denef, K. T. Konstantinidis, L. M. Vergez, L. Agullo, V. L. Reyes, L. Hauser, M. Cordova, L. Gomez, M. Gonzalez, M. Land, V. Lao, F. Larimer, J. J. LiPuma, E. Mahenthiralingam, S. A. Malfatti, C. J. Marx, J. J. Parnell, A. Ramette, P. Richardson, M. Seeger, D. Smith, T. Spilker, W. J. Sul, T. V. Tsoi, L. E. Ulrich, I. B. Zhulin, and J. M. Tiedje. 2006. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc. Natl. Acad. Sci. USA 103: 15280-15287
  28. Chen, W. M., E. K. James, T. Coenye, J. H. Chou, E. Barrios, S. M. de Faria, G. N. Elliott, S. Y. Sheu, J. I. Sprent, and P. Vandamme. 2006. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int. J. Syst. Evol. Microbiol. 56: 1847- 1851 https://doi.org/10.1099/ijs.0.64325-0
  29. Chen, W. M., S. M. de Faria, E. K. James, G. N. Elliott, K. Y. Lin, J. H. Chou, S. Y. Sheu, M. Cnockaert, J. I. Sprent, and P. Vandamme. 2007. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int. J. Syst. Evol. Microbiol. 57: 1055-1059 https://doi.org/10.1099/ijs.0.64873-0
  30. Cheng, A. C. and B. J. Currie. 2005. Melioidosis: Epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18: 383-416 https://doi.org/10.1128/CMR.18.2.383-416.2005
  31. Chernin, L. S., A. Brandis, Z. F. Ismailov, and I. Chet. 1996. Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr. Microbiol. 32: 1-5 https://doi.org/10.1007/s002849900001
  32. Chin-A-Woeng, T. F. C., G. V. Bloemberg, and B. J. J. Lugtenberg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503-523 https://doi.org/10.1046/j.1469-8137.2003.00686.x
  33. Chowdhury, P. R. and J. A. Heinemann. 2006. The general secretory pathway of Burkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Appl. Environ. Microbiol. 72: 3558-3565 https://doi.org/10.1128/AEM.72.5.3558-3565.2006
  34. Christenson, J. C., D. F. Welch, G. Mukwaya, M. J. Muszynski, R. E. Weaver, and D. J. Brenner. 1989. Recovery of Pseudomonas gladioli from respiratory tract specimens of patients with cystic fibrosis. J. Clin. Microbiol. 27: 270- 273
  35. Ciccillo, F., A. Fiore, A. Bevivino, C. Dalmastri, S. Tabacchioni, and L. Chiarini. 2002. Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ. Microbiol. 4: 238-245 https://doi.org/10.1046/j.1462-2920.2002.00291.x
  36. Coenye, T., B. Holmes, K. Kersters, J. R. Govan, and P. Vandamme. 1999. Burkholderia cocovenenans (van Damme et al., 1960) Gillis et al., 1995 and Burkholderia vandii Urakami et al., 1994 are junior synonyms of Burkholderia gladioli (Severini, 1913) Yabuuchi et al., 1993 and Burkholderia plantarii (Azegami et al., 1987) Urakami et al., 1994, respectively. Int. J. Syst. Bacteriol. 49: 37-42 https://doi.org/10.1099/00207713-49-1-37
  37. Coenye, T., S. Laevens, A. Willems, M. Ohlen, W. Hannant, J. R. Govan, M. Gillis, E. Falsen, and P. Vandamme. 2001. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 51: 1099-1107 https://doi.org/10.1099/00207713-51-3-1099
  38. Coenye, T., E. Mahenthiralingam, D. Henry, J. J. LiPuma, S. Laevens, M. Gillis, D. P. Speert, and P. Vandamme. 2001. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol. 51: 1481-1490 https://doi.org/10.1099/00207713-51-4-1481
  39. Coenye, T., P. Vandamme, J. R. Govan, and J. J. LiPuma. 2001. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39: 3427-3436 https://doi.org/10.1128/JCM.39.10.3427-3436.2001
  40. Coenye, T., D. Henry, D. P. Speert, and P. Vandamme. 2004. Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst. Appl. Microbiol. 27: 623-627 https://doi.org/10.1078/0723202042369992
  41. Conway, B. A. and E. P. Greenberg. 2002. Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis. J. Bacteriol. 184: 1187-1191 https://doi.org/10.1128/jb.184.4.1187-1191.2002
  42. Corbett, C. R., M. N. Burtnick, C. Kooi, D. E. Woods, and P. A. Sokol. 2003. An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiology 149: 2263- 2271 https://doi.org/10.1099/mic.0.26243-0
  43. Cornelis, G. R. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4: 811-825 https://doi.org/10.1038/nrmicro1526
  44. Cornish, A. S. and W. J. Page. 1995. Production of the triacetecholate siderophore protochelin by Azotobacter- Vinelandii. Biometals 8: 332-338
  45. Cottyn, B., M. T. Cerez, M. F. Van Outryve, J. Barroga, J. Swings, and T. W. Mew. 1996. Bacterial diseases of rice. I. Pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis. 80: 429-437 https://doi.org/10.1094/PD-80-0429
  46. Cox, C. D. and R. Graham. 1979. Isolation of an iron-binding compound from Pseudomonas aeruginosa. J. Bacteriol. 137: 357-364
  47. Darling, P., M. Chan, A. D. Cox, and P. A. Sokol. 1998. Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect. Immun. 66: 874-877
  48. De Souza, J. T. and J. M. Raaijmakers. 2003. Polymorphisms within the prnprnD and pltpltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43: 21-34
  49. De Voss, J. J., K. Rutter, B. G. Schroeder, H. Su, Y. Zhu, and C. E. Barry 3rd. 2000. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad Sci. USA 97: 1252-1257
  50. DeShazer, D., P. J. Brett, M. N. Burtnick, and D. E. Woods. 1999. Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J. Bacteriol. 181: 4661-4664
  51. Devescovi, G., J. Bigirimana, G. Degrassi, L. Cabrio, J. J. Lipuma, J. Kim, I. Hwang, and V. Venturi. 2007. A clinical isolate of Burkholderia glumae causes severe disease symptoms in rice; involvement of a quorum sensing regulated secreted lipase. Appl. Environ. Microbiol. In Press
  52. Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107-149 https://doi.org/10.1080/713610853
  53. Duodu, S., T. V. Bhuvaneswari, T. J. Stokkermans, and N. K. Peters. 1999. A positive role for rhizobitoxine in Rhizobiumlegume symbiosis. Mol. Plant Microbe Interact. 12: 1082- 1089 https://doi.org/10.1094/MPMI.1999.12.12.1082
  54. El-Banna, N. and G. Winkelmann. 1998. Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol. 85: 69-78 https://doi.org/10.1046/j.1365-2672.1998.00473.x
  55. El Khattabi, M., P. Van Gelder, W. Bitter, and J. Tommassen. 2000. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. J. Biol. Chem. 275: 26885-26891
  56. Elander, R. P., J. A. Mabe, R. H. Hamill, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl. Microbiol. 16: 753-758
  57. Engledow, A. S., E. G. Medrano, E. Mahenthiralingam, J. J. LiPuma, and C. F. Gonzalez. 2004. Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J. Bacteriol. 186: 6015-6024 https://doi.org/10.1128/JB.186.18.6015-6024.2004
  58. Farmer, K. L. and M. S. Thomas. 2004. Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: Pyochelin biosynthesis is sensitive to sulfur availability. J. Bacteriol. 186: 270-277 https://doi.org/10.1128/JB.186.2.270-277.2004
  59. Fehlner-Gardiner, C. C., T. M. Hopkins, and M. A. Valvano. 2002. Identification of a general secretory pathway in a human isolate of Burkholderia vietnamiensis (formerly B. cepacia complex genomovar V) that is required for the secretion of hemolysin and phospholipase C activities. Microb. Pathog. 32: 249-254 https://doi.org/10.1006/mpat.2002.0503
  60. Frenken, L. G., M. R. Egmond, A. M. Batenburg, J. W. Bos, C. Visser, and C. T. Verrips. 1992. Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. Appl. Environ. Microbiol. 58: 3787- 3791
  61. Frenken, L. G., J. W. Bos, C. Visser, W. Muller, J. Tommassen, and C. T. Verrips. 1993. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol. Microbiol. 9: 579-589 https://doi.org/10.1111/j.1365-2958.1993.tb01718.x
  62. Frenken, L. G., A. de Groot, J. Tommassen, and C. T. Verrips. 1993. Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Mol. Microbiol. 9: 591-599 https://doi.org/10.1111/j.1365-2958.1993.tb01719.x
  63. Fuqua, W. C., S. C. Winans, and E. P. Greenberg. 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275 https://doi.org/10.1128/jb.176.2.269-275.1994
  64. Gauthier, Y. P., F. M. Thibault, J. C. Paucod, and D. R. Vidal. 2000. Protease production by Burkholderia pseudomallei and virulence in mice. Acta Trop. 74: 215-220 https://doi.org/10.1016/S0001-706X(99)00073-X
  65. Gerth, K., W. Trowitzsch, V. Wray, G. Hofle, H. Irschik, and H. Reichenbach. 1982. Pyrrolnitrin from Myxococcus fulvus (Myxobacterales). J. Antibiot. (Tokyo) 35: 1101-1103 https://doi.org/10.7164/antibiotics.35.1101
  66. Gillis, M., T. V. Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kersters, T. Heulin, and M. P. Fernandez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for $N_2$-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45: 274-289 https://doi.org/10.1099/00207713-45-2-274
  67. Gingues, S., C. Kooi, M. B. Visser, B. Subsin, and P. A. Sokol. 2005. Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J. Bacteriol. 187: 8247-8255 https://doi.org/10.1128/JB.187.24.8247-8255.2005
  68. Glass, M. B., J. E. Gee, A. G. Steigerwalt, D. Cavuoti, T. Barton, R. D. Hardy, D. Godoy, B. G. Spratt, T. A. Clark, and P. P. Wilkins. 2006. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J. Clin. Microbiol. 44: 4601-4604 https://doi.org/10.1128/JCM.01585-06
  69. Glass, M. B., A. G. Steigerwalt, J. G. Jordan, P. P. Wilkins, and J. E. Gee. 2006. Burkholderia oklahomensis sp. nov., a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int. J. Syst. Evol. Microbiol. 56: 2171-2176 https://doi.org/10.1099/ijs.0.63991-0
  70. Goh, K. C., H. Wang, N. Yu, Y. Zhou, Y. Zheng, Z. Lim, K. Sangthongpitag, L. Fang, M. Du, and X. Wang. 2004. PLK1 as a potential drug target in cancer therapy. Drug Dev. Res. 62: 349-361 https://doi.org/10.1002/ddr.10392
  71. Gonzalez, C. F., E. A. Pettit, V. A. Valadez, and E. M. Provin. 1997. Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia (Pseudomonas) cepacia. Mol. Plant Microbe Interact. 10: 840-851 https://doi.org/10.1094/MPMI.1997.10.7.840
  72. Goris, J., P. De Vos, J. Caballero-Mellado, J. Park, E. Falsen, J. F. Quensen 3rd, J. M. Tiedje, and P. Vandamme. 2004. Classification of the biphenyl- and polychlorinated biphenyldegrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int. J. Syst. Evol. Microbiol. 54: 1677- 1681 https://doi.org/10.1099/ijs.0.63101-0
  73. Hammer, P. E., W. Burd, D. S. Hill, J. M. Ligon, and K. van Pee. 1999. Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains. FEMS Microbiol. Lett. 180: 39-44 https://doi.org/10.1111/j.1574-6968.1999.tb08775.x
  74. Haque, A., K. Chu, A. Easton, M. P. Stevens, E. E. Galyov, T. Atkins, R. Titball, and G. J. Bancroft. 2006. A live experimental vaccine against Burkholderia pseudomallei elicits CD4+ T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins. J. Infect. Dis. 194: 1241-1248 https://doi.org/10.1086/508217
  75. Haussler, S., M. Nimtz, T. Domke, V. Wray, and I. Steinmetz. 1998. Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect. Immun. 66: 1588-1593
  76. Haussler, S., M. Rohde, N. von Neuhoff, M. Nimtz, and I. Steinmetz. 2003. Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect. Immun. 71: 2970-2975 https://doi.org/10.1128/IAI.71.5.2970-2975.2003
  77. Heinrichs, D. E. and K. Poole. 1993. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J. Bacteriol. 175: 5882-5889 https://doi.org/10.1128/jb.175.18.5882-5889.1993
  78. Henderson, P. J. and H. A. Lardy. 1970. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J. Biol. Chem. 245: 1319-1326
  79. Hobson, A. H., C. M. Buckley, J. L. Aamand, S. T. Jorgensen, B. Diderichsen, and D. J. McConnell. 1993. Activation of a bacterial lipase by its chaperone. Proc. Natl. Acad. Sci. USA 90: 5682-5686
  80. Holden, M. T., R. W. Titball, S. J. Peacock, A. M. Cerdeno- Tarraga, T. Atkins, L. C. Crossman, T. Pitt, C. Churcher, K. Mungall, S. D. Bentley, M. Sebaihia, N. R. Thomson, N. Bason, I. R. Beacham, K. Brooks, K. A. Brown, N. F. Brown, G. L. Challis, I. Cherevach, T. Chillingworth, A. Cronin, B. Crossett, P. Davis, D. DeShazer, T. Feltwell, A. Fraser, Z. Hance, H. Hauser, S. Holroyd, K. Jagels, K. E. Keith, M. Maddison, S. Moule, C. Price, M. A. Quail, E. Rabbinowitsch, K. Rutherford, M. Sanders, M. Simmonds, S. Songsivilai, K. Stevens, S. Tumapa, M. Vesaratchavest, S. Whitehead, C. Yeats, B. G. Barrell, P. C. Oyston, and J. Parkhill. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad Sci. USA 101: 14240-14245
  81. Homma, Y., Z. Sato, F. Hirayama, K. Konno, H. Shirahama, and T. Suzui. 1989. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21: 723-728 https://doi.org/10.1016/0038-0717(89)90070-9
  82. Huber, B., K. Riedel, M. Hentzer, A. Heydorn, A. Gotschlich, M. Givskov, S. Molin, and L. Eberl. 2001. The cep quorumsensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147: 2517-2528 https://doi.org/10.1099/00221287-147-9-2517
  83. Huber, B., F. Feldmann, M. Kothe, P. Vandamme, J. Wopperer, K. Riedel, and L. Eberl. 2004. Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect. Immun. 72: 7220-7230 https://doi.org/10.1128/IAI.72.12.7220-7230.2004
  84. Hutchison, M. L., I. R. Poxton, and J. R. Govan. 1998. Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect. Immun. 66: 2033-2039
  85. Hwang, B. K., S. W. Lim, B. S. Kim, J. Y. Lee, and S. S. Moon. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67: 3739- 3745 https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  86. Jayaswal, R. K., M. Fernandez, R. S. Upadhyay, L. Visintin, M. Kurz, J. Webb, and K. Rinehart. 1993. Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr. Microbiol. 26: 17-22 https://doi.org/10.1007/BF01577237
  87. Jennessen, J., K. F. Nielsen, J. Houbraken, E. K. Lyhne, J. Schnurer, J. C. Frisvad, and R. A. Samson. 2005. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J. Agric. Food Chem. 53: 1833-1840 https://doi.org/10.1021/jf048147n
  88. Jeong, Y., J. Kim, S. Kim, Y. Kang, T. Nagamatsu, and I. Hwang. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87: 890-895 https://doi.org/10.1094/PDIS.2003.87.8.890
  89. Jorgensen, S., K. W. Skov, and B. Diderichsen. 1991. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: Lipase production in heterologous hosts requires two Pseudomonas genes. J. Bacteriol. 173: 559-567 https://doi.org/10.1128/jb.173.2.559-567.1991
  90. Kai, M., U. Effmert, G. Berg, and B. Piechulla. 2007. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187: 351-360 https://doi.org/10.1007/s00203-006-0199-0
  91. Kang, J. G., S. Y. Shin, M. J. Kim, V. Bajpai, D. K. Maheshwari, and S. C. Kang. 2004. Isolation and anti-fungal activities of 2-hydroxymethyl-chroman-4-one produced by Burkholderia sp. MSSP. J. Antibiot. (Tokyo) 57: 726-731 https://doi.org/10.7164/antibiotics.57.726
  92. Kim, H. B., M. J. Park, H. C. Yang, D. S. An, H. Z. Jin, and D. C. Yang. 2006. Burkholderia ginsengisoli sp. nov., a betaglucosidase- producing bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 56: 2529-2533 https://doi.org/10.1099/ijs.0.64387-0
  93. Kim, J., J. G. Kim, Y. Kang, J. Y. Jang, G. J. Jog, J. Y. Lim, S. Kim, H. Suga, T. Nagamatsu, and I. Hwang. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54: 921-934 https://doi.org/10.1111/j.1365-2958.2004.04338.x
  94. Kirinuki, T., T. Ichiba, and K. Katayama. 1984. General survey of action site of altericidins on metabolism of Alternaria kikuchiana and Ustilago maydis. J. Pestic. Sci. 9: 601-610 https://doi.org/10.1584/jpestics.9.601
  95. Kirner, S., P. E. Hammer, D. S. Hill, A. Altmann, I. Fischer, L. J. Weislo, M. Lanahan, K. H. van Pee, and J. M. Ligon. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180: 1939- 1943
  96. Koga-Ban, Y., T. Niki, Y. Nagamura, T. Sasaki, and Y. Minobe. 1995. cDNA sequences of three kinds of betatubulins from rice. DNA Res. 2: 21-26 https://doi.org/10.1093/dnares/2.1.21
  97. Kooi, C., C. R. Corbett, and P. A. Sokol. 2005. Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease. J. Bacteriol. 187: 4421-4429 https://doi.org/10.1128/JB.187.13.4421-4429.2005
  98. Kooi, C., B. Subsin, R. Chen, B. Pohorelic, and P. A. Sokol. 2006. Burkholderia cenocepacia ZmpB is a broadspecificity zinc metalloprotease involved in virulence. Infect. Immun. 74: 4083-4093 https://doi.org/10.1128/IAI.00297-06
  99. Korbsrisate, S., N. Suwanasai, A. Leelaporn, T. Ezaki, Y. Kawamura, and S. Sarasombath. 1999. Cloning and characterization of a nonhemolytic phospholipase C gene from Burkholderia pseudomallei. J. Clin. Microbiol. 37: 3742-3745
  100. Korbsrisate, S., A. P. Tomaras, S. Damnin, J. Ckumdee, V. Srinon, I. Lengwehasatit, M. L. Vasil, and S. Suparak. 2007. Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. Microbiology 153: 1907-1915 https://doi.org/10.1099/mic.0.2006/003004-0
  101. Lafontaine, J. A., D. P. Provencal, C. Gardelli, and J. W. Leahy. 2003. Enantioselective total synthesis of the antitumor macrolide rhizoxin D. J. Org. Chem. 68: 4215-4234 https://doi.org/10.1021/jo034011x
  102. Latuasan, H. E. and W. Berends. 1961. On the origin of the toxicity of toxoflavin. Biochem. Biophys. Acta 52: 502-508 https://doi.org/10.1016/0006-3002(61)90408-5
  103. Laursen, J. B. and J. Nielsen. 2004. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104: 1663-1686 https://doi.org/10.1021/cr020473j
  104. Lee, C.-H., J.-W. Suh, and Y.-H. Cho. 1999. Immunosuppressive activity of cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. J. Microbiol. Biotechnol. 9: 672-674
  105. Lee, C.-H., H.-J. Kempf, Y. Lim, and Y.-H. Cho. 2000. Biocontrol activity of Pseudomonas cepacia AF2001 and anthelmintic activity of its novel metabolite, Cepacidine A. J. Microbiol. Biotechnol. 10: 568-571
  106. Lee, C. H., S. Kim, B. Hyun, J. W. Suh, C. Yon, C. Kim, Y. Lim, and C. Kim. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J. Antibiot. (Tokyo) 47: 1402-1405 https://doi.org/10.7164/antibiotics.47.1402
  107. Lee, M. A. and Y. Liu. 2000. Sequencing and characterization of a novel serine metalloprotease from Burkholderia pseudomallei. FEMS Microbiol. Lett. 192: 67-72 https://doi.org/10.1111/j.1574-6968.2000.tb09360.x
  108. Lewenza, S., B. Conway, E. P. Greenberg, and P. A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: Identification of the LuxRI homologs CepRI. J. Bacteriol. 181: 748-756
  109. Lewenza, S. and P. A. Sokol. 2001. Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. J. Bacteriol. 183: 2212-2218 https://doi.org/10.1128/JB.183.7.2212-2218.2001
  110. Li, W., D. P. Roberts, P. D. Dery, S. L. F. Meyer, S. Lohrke, R. D. Lumsden, and K. P. Hebbar. 2002. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. J. 21: 129-135 https://doi.org/10.1016/S0261-2194(01)00074-6
  111. Lim, Y. W., K. S. Baik, S. K. Han, S. B. Kim, and K. S. Bae. 2003. Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int. J. Syst. Evol. Microbiol. 53: 1631-1636 https://doi.org/10.1099/ijs.0.02456-0
  112. Liu, X., M. Bimerew, Y. Ma, H. Muller, M. Ovadis, L. Eberl, G. Berg, and L. Chernin. 2007. Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol. Lett. 270: 299-305 https://doi.org/10.1111/j.1574-6968.2007.00681.x
  113. Lonon, M. K., D. E. Woods, and D. C. Straus. 1988. Production of lipase by clinical isolates of Pseudomonas cepacia. J. Clin. Microbiol. 26: 979-984
  114. Lonon, M. K., D. E. Woods, and D. C. Straus. 1992. The effects of purified 25-kDa lipase from a clinical isolate of Pseudomonas cepacia in the lungs of rats. Curr. Microbiol. 25: 89-93 https://doi.org/10.1007/BF01570965
  115. Loprasert, S., R. Sallabhan, W. Whangsuk, and S. Mongkolsuk. 2000. Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene 254: 129- 137 https://doi.org/10.1016/S0378-1119(00)00279-1
  116. Lowe, C. A., A. H. Asghar, G. Shalom, J. G. Shaw, and M. S. Thomas. 2001. The Burkholderia cepacia fur gene: Colocalization with omlA and absence of regulation by iron. Microbiology 147: 1303-1314 https://doi.org/10.1099/00221287-147-5-1303
  117. Lutter, E., S. Lewenza, J. J. Dennis, M. B. Visser, and P. A. Sokol. 2001. Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect. Immun. 69: 4661- 4666 https://doi.org/10.1128/IAI.69.7.4661-4666.2001
  118. Ma, W., D. M. Penrose, and B. R. Glick. 2002. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can. J. Microbiol. 11: 947-954
  119. Mahenthiralingam, E., A. Baldwin, and P. Vandamme. 2002. Burkholderia cepacia complex infection in patients with cystic fibrosis. J. Med. Microbiol. 51: 533-538 https://doi.org/10.1099/0022-1317-51-7-533
  120. Malott, R. J., A. Baldwin, E. Mahenthiralingam, and P. A. Sokol. 2005. Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect. Immun. 73: 4982-4992 https://doi.org/10.1128/IAI.73.8.4982-4992.2005
  121. Mao, S., S. J. Lee, H. Hwangbo, Y. W. Kim, K. H. Park, G. S. Cha, R. D. Park, and K. Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53: 358- 364 https://doi.org/10.1007/s00284-005-0333-2
  122. Marchetti, P., M. Castedo, S. A. Susin, N. Zamzami, T. Hirsch, A. Macho, A. Haeffner, F. Hirsch, M. Geuskens, and G. Kroemer. 1996. Mitochondrial permeability transition is a central coordinating event of apoptosis J. Exp. Med. 184: 1155-1160 https://doi.org/10.1084/jem.184.3.1155
  123. Massa, C., G. Degrassi, G. Devescovi, V. Venturi, and D. Lamba. 2007. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Expr. Purif. 54: 300-308 https://doi.org/10.1016/j.pep.2007.03.019
  124. Matsuda, I. and Z. Sato. 1988. Regulation between pathogenicity and pigment productivity in the causal agent of bacterial grain rot of rice. Ann. Phytopathol. Soc. Jpn 54: 378 https://doi.org/10.3186/jjphytopath.54.378
  125. McCulloch, L. 1921. A bacterial disease of gladiolus. Science 54: 115-116 https://doi.org/10.1126/science.54.1388.115
  126. McKenney, D., K. E. Brown, and D. G. Allison. 1995. Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: Evidence of interspecies communication. J. Bacteriol. 177: 6989-6992 https://doi.org/10.1128/jb.177.23.6989-6992.1995
  127. McKevitt, A. I., S. Bajaksouzian, J. D. Klinger, and D. E. Woods. 1989. Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect. Immun. 57: 771-778
  128. Meyer, J. M., D. Hohnadel, and F. Halle. 1989. Cepabactin from Pseudomonas cepacia, a new type of siderophore. J. Gen. Microbiol. 135: 1479-1487
  129. Meyer, J. M., V. T. Van, A. Stintzi, O. Berge, and G. Winkelmann. 1995. Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). Biometals 8: 309-317 https://doi.org/10.1007/BF00141604
  130. Miche, L., D. Faure, M. Blot, E. Cabanne-Giuli, and J. Balandreau. 2001. Detection and activity of insertion sequences in environmental strains of Burkholderia. Environ. Microbiol. 3: 766-773 https://doi.org/10.1046/j.1462-2920.2001.00251.x
  131. Mitchell, R. E., E. J. Frey, and M. K. Benn. 1986. Rhizobitoxine and 1-threohydroxythreonine production by the plant pathogen Pseudomonas andropogonis. Phytochemistry 25: 2711-2715
  132. Moon, S.-S., P. M. Kang, K. S. Park, and C. H. Kim. 1996. Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia. Phytochemistry 42: 365-368 https://doi.org/10.1016/0031-9422(95)00897-7
  133. Morita, Y., E. Matsumura, T. Okabe, M. Shibata, M. Sugiura, T. Ohe, H. Tsujibo, N. Ishida, and Y. Inamori. 2003. Biological activity of tropolone. Biol. Pharm. Bull. 26: 1487-1490 https://doi.org/10.1248/bpb.26.1487
  134. Muir, R. M., T. Fujita, and C. Hansch. 1967. Structureactivity relationships in the auxin activity of mono-substituted phenylacetic acids. Plant Physiol. 42: 1519-1526 https://doi.org/10.1104/pp.42.11.1519
  135. Nagamatsu, T. 2001. Syntheses, transformation, and biological activities of 7-azapteridine antibiotics: Toxoflavin, fervenulin, reumycin and their analogs. Recent Res. Devel. Org. Bioorg. Chem. 4: 97-121
  136. Nair, B. M., K. J. Cheung Jr., A. Griffith, and J. L. Burns. 2004. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). J. Clin. Invest. 113: 464-473 https://doi.org/10.1172/JCI200419710
  137. Nakazawa, T., Y. Yamada, and M. Ishibashi. 1987. Characterization of hemolysin in extracellular products of Pseudomonas cepacia. J. Clin. Microbiol. 25: 195-198
  138. Nierman, W. C., D. DeShazer, H. S. Kim, H. Tettelin, K. E. Nelson, T. Feldblyum, R. L. Ulrich, C. M. Ronning, L. M. Brinkac, S. C. Daugherty, T. D. Davidsen, R. T. Deboy, G. Dimitrov, R. J. Dodson, A. S. Durkin, M. L. Gwinn, D. H. Haft, H. Khouri, J. F. Kolonay, R. Madupu, Y. Mohammoud, W. C. Nelson, D. Radune, C. M. Romero, S. Sarria, J. Selengut, C. Shamblin, S. A. Sullivan, O. White, Y. Yu, N. Zafar, L. Zhou, and C. M. Fraser. 2004. Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad. Sci. USA 101: 14246-14251
  139. Ogawa, K., N. Yoshida, K. Kariya, C. Ohnishi, and R. Ikeda. 2002. Purification and characterization of a novel chitinase from Burkholderia cepacia strain KH2 isolated from the bed log of Lentinus edodes, Shiitake mushroom. J. Gen. Appl. Microbiol. 48: 25-33 https://doi.org/10.2323/jgam.48.25
  140. Oka, M., Y. Nishiyama, S. Ohta, H. Kamei, M. Konishi, T. Miyaki, T. Oki, and H. Kawaguchi. 1988. Glidobactins A, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity. J. Antibiot. (Tokyo) 41: 1331-1337 https://doi.org/10.7164/antibiotics.41.1331
  141. Okazaki, S., N. Nukui, M. Sugawara, and K. Minamisawa. 2004. Rhizobial strategies to enhance symbiotic interaction: Rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ. 19: 99-111 https://doi.org/10.1264/jsme2.19.99
  142. Ostroff, R. M., A. I. Vasil, and M. L. Vasil. 1990. Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J. Bacteriol. 172: 5915- 5923 https://doi.org/10.1128/jb.172.10.5915-5923.1990
  143. Ovadis, M., X. Liu, S. Gavriel, Z. Ismailov, I. Chet, and L. Chernin. 2004. The global regulator genes from biocontrol strain Serratia plymuthica IC1270: Cloning, sequencing, and functional studies. J. Bacteriol. 186: 4986-4993 https://doi.org/10.1128/JB.186.15.4986-4993.2004
  144. Pandey, P., S. C. Kang, and D. K. Maheshwari. 2005. Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr. Sci. 89: 177-180
  145. Parker, W. L., M. L. Rathnum, V. Seiner, W. H. Trejo, P. A. Principe, and R. B. Sykes. 1984. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J. Antibiot. (Tokyo) 37: 431-440 https://doi.org/10.7164/antibiotics.37.431
  146. Partida-Martinez, L. P. and C. Hertweck. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437: 884-888 https://doi.org/10.1038/nature03997
  147. Partida-Martinez, L. P., C. F. de Looss, K. Ishida, M. Ishida, M. Roth, K. Buder, and C. Hertweck. 2007. Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl. Environ. Microbiol. 73: 793-797 https://doi.org/10.1128/AEM.01784-06
  148. Partida-Martinez, L. P. and C. Hertweck. 2007. A gene cluster encoding rhizoxin biosynthesis in 'Burkholderia rhizoxina', the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem 8: 41-45 https://doi.org/10.1002/cbic.200600393
  149. Perin, L., L. Martinez-Aguilar, G. Paredes-Valdez, J. I. Baldani, P. Estrada-de Los Santos, V. M. Reis, and J. Caballero-Mellado. 2006. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int. J. Syst. Evol. Microbiol. 56: 1931-1937 https://doi.org/10.1099/ijs.0.64362-0
  150. Quan, C. S., W. Zheng, Q. Liu, Y. Ohta, and S. D. Fan. 2006. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biotechnol. 72: 1276-1284 https://doi.org/10.1007/s00253-006-0425-3
  151. Rabea, E. I., M. E. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut. 2003. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4: 1457-1465 https://doi.org/10.1021/bm034130m
  152. Rainbow, L., C. A. Hart, and C. Winstanley. 2002. Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. J. Med. Microbiol. 51: 374-384 https://doi.org/10.1099/0022-1317-51-5-374
  153. Rainbow, L., M. C. Wilkinson, P. J. Sargent, C. A. Hart, and C. Winstanley. 2004. Identification and expression of a Burkholderia pseudomallei collagenase in Escherichia coli. Curr. Microbiol. 48: 300-304 https://doi.org/10.1007/s00284-003-4192-4
  154. Rasolomampianina, R., X. Bailly, R. Fetiarison, R. Rabevohitra, G. Bena, L. Ramaroson, M. Raherimandimby, L. Moulin, P. De Lajudie, B. Dreyfus, and J. C. Avarre. 2005. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol. Ecol. 14: 4135-4146 https://doi.org/10.1111/j.1365-294X.2005.02730.x
  155. Ratledge, C. and L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881-941 https://doi.org/10.1146/annurev.micro.54.1.881
  156. Reading, N. C. and V. Sperandio. c. Quorum sensing: The many languages of bacteria. FEMS Microbiol. Lett. 254: 1-11 https://doi.org/10.1111/j.1574-6968.2005.00001.x
  157. Reis, V. M., P. Estrada-de los Santos, S. Tenorio-Salgado, J. Vogel, M. Stoffels, S. Guyon, P. Mavingui, V. L. D. Baldani, M. Schmid, J. I. Baldani, J. Balandreau, A. Hartmann, and J. Caballero-Mellado. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Evol. Microbiol. 54: 2155-2162 https://doi.org/10.1099/ijs.0.02879-0
  158. Rosenau, F. and K. Jaeger. 2000. Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie 82: 1023-1032 https://doi.org/10.1016/S0300-9084(00)01182-2
  159. Ross, J. P., S. M. Holland, V. J. Gill, E. S. DeCarlo, and J. I. Gallin. 1995. Severe Burkholderia (Pseudomonas) gladioli infection in chronic granulomatous disease: Report of two successfully treated cases. Clin. Infect. Dis. 21: 1291-1293 https://doi.org/10.1093/clinids/21.5.1291
  160. Rotz, L. D., A. S. Khan, S. R. Lillibridge, S. M. Ostroff, and J. M. Hughes. 2002. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 8: 225-230 https://doi.org/10.3201/eid0802.010164
  161. Schellenberg, B., L. Bigler, and R. Dudler. 2007. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 9: 1640-1650 https://doi.org/10.1111/j.1462-2920.2007.01278.x
  162. Scherlach, K., L. P. Partida-Martinez, H. M. Dahse, and C. Hertweck. 2006. Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J. Am. Chem. Soc. 128: 11529-11536 https://doi.org/10.1021/ja062953o
  163. Sessitsch, A., T. Coenye, A. V. Sturz, P. Vandamme, E. A. Barka, J. F. Salles, J. D. Van Elsas, D. Faure, B. Reiter, B. R. Glick, G. Wang-Pruski, and J. Nowak. 2005. Burkholderia phytofirmans sp. nov., a novel plantassociated bacterium with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187-1192 https://doi.org/10.1099/ijs.0.63149-0
  164. Sexton, M. M., A. L. Jones, W. Chaowagul, and D. E. Woods. 1994. Purification and characterization of a protease from Pseudomonas pseudomallei. Can. J. Microbiol. 40: 903-910 https://doi.org/10.1139/m94-145
  165. Shimosaka, M., M. Nogawa, X. Wang, M. Kumehara, and M. Okazaki. 1995. Production of two chitosanases from a chitosan-assimilating bacterium, Acinetobacter sp. strain CHB101. Appl. Environ. Microbiol. 61: 438-442
  166. Shimosaka, M., Y. Fukumori, X. Y. Zhang, N. J. He, R. Kodaira, and M. Okazaki. 2000. Molecular cloning and characterization of a chitosanase from the chitosanolytic bacterium Burkholderia gladioli strain CHB101. Appl. Microbiol. Biotechnol. 54: 354-360 https://doi.org/10.1007/s002530000388
  167. Shoji, J., H. Hinoo, T. Kato, T. Hattori, K. Hirooka, K. Tawara, O. Shiratori, and Y. Terui. 1990. Isolation of cepafungins I, II and III from Pseudomonas species. J. Antibiot. (Tokyo) 43: 783-787 https://doi.org/10.7164/antibiotics.43.783
  168. Soberon-Chavez, G., F. Lepine, and E. Deziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68: 718-725 https://doi.org/10.1007/s00253-005-0150-3
  169. Sokol, P. A. 1986. Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J. Clin. Microbiol. 23: 560-562
  170. Sokol, P. A., C. J. Lewis, and J. J. Dennis. 1992. Isolation of a novel siderophore from Pseudomonas cepacia. J. Med. Microbiol. 36: 184-189 https://doi.org/10.1099/00222615-36-3-184
  171. Sokol, P. A., P. Darling, D. E. Woods, E. Mahenthiralingam, and C. Kooi. 1999. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: Characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Infect. Immun. 67: 4443-4455
  172. Sokol, P. A., U. Sajjan, M. B. Visser, S. Gingues, J. Forstner, and C. Kooi. 2003. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149: 3649-3658 https://doi.org/10.1099/mic.0.26540-0
  173. Solis, R., I. Bertani, G. Degrassi, G. Devescovi, and V. Venturi. 2006. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii. FEMS Microbiol. Lett. 259: 106-112 https://doi.org/10.1111/j.1574-6968.2006.00254.x
  174. Song, Y., C. Xie, Y. M. Ong, Y. H. Gan, and K. L. Chua. 2005. The BpsIR quorum-sensing system of Burkholderia pseudomallei. J. Bacteriol. 187: 785-790 https://doi.org/10.1128/JB.187.2.785-790.2005
  175. Songer, J. G. 1997. Bacterial phospholipases and their role in virulence. Trends Microbiol. 5: 156-161 https://doi.org/10.1016/S0966-842X(97)01005-6
  176. Stephan, H., S. Freund, W. Beck, G. Jung, J. M. Meyer, and G. Winkelmann. 1993. Ornibactins - a new family of siderophores from Pseudomonas. Biometals 6: 93-100
  177. Stevens, M. P., M. W. Wood, L. A. Taylor, P. Monaghan, P. Hawes, P. W. Jones, T. S. Wallis, and E. E. Galyov. 2002. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microbiol. 46: 649-659 https://doi.org/10.1046/j.1365-2958.2002.03190.x
  178. Stevens, M. P., A. Friebel, L. A. Taylor, M. W. Wood, P. J. Brown, W. D. Hardt, and E. E. Galyov. 2003. A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol. 185: 4992-4996 https://doi.org/10.1128/JB.185.16.4992-4996.2003
  179. Stevens, M. P., A. Haque, T. Atkins, J. Hill, M. W. Wood, A. Easton, M. Nelson, C. Underwood-Fowler, R. W. Titball, G. J. Bancroft, and E. E. Galyov. 2004. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150: 2669-2676 https://doi.org/10.1099/mic.0.27146-0
  180. Stevens, M. P., J. M. Stevens, R. L. Jeng, L. A. Taylor, M. W. Wood, P. Hawes, P. Monaghan, M. D. Welch, and E. E. Galyov. 2005. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol. 56: 40-53 https://doi.org/10.1111/j.1365-2958.2004.04528.x
  181. Subsin, B., C. E. Chambers, M. B. Visser, and P. A. Sokol. 2007. Identification of genes regulated by the cepIR quorum-sensing system in Burkholderia cenocepacia by high-throughput screening of a random promoter library. J. Bacteriol. 189: 968-979 https://doi.org/10.1128/JB.01201-06
  182. Suzuki, F., Y. Zhu, H. Sawada, and I. Matsuda. 1998. Identification of proteins involved in toxin production by Pseudomonas glumae. Ann. Phytopathol. Soc. Jpn 64: 75- 79 https://doi.org/10.3186/jjphytopath.64.75
  183. Takahashi, M., S. Iwasaki, H. Kobayashi, S. Okuda, T. Murai, Y. Sato, T. Haraguchi-Hiraoka, and H. Nagano. 1987. Studies on macrocyclic lactone antibiotics. XI. Antimitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its homologues. J. Antibiot. (Tokyo) 40: 66-72 https://doi.org/10.7164/antibiotics.40.66
  184. Takeda, Y., R. Aono, and N. Doukyu. 2006. Purification, characterization, and molecular cloning of organic-solventtolerant cholesterol esterase from cyclohexane-tolerant Burkholderia cepacia strain ST-200. Extremophiles 10: 269-277 https://doi.org/10.1007/s00792-005-0494-8
  185. Tawara, S., S. Matsumoto, T. Hirose, Y. Matsumoto, S. Nakamoto, M. Mitsuno, and T. Kamimura. 1989. In vitro antifungal synergism between pyrrolnitrin and clotrimazole. Jpn J. Med. Mycol. 30: 202-210 https://doi.org/10.3314/jjmm1960.30.202
  186. Thomas, M. S. 2007. Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20: 431-452 https://doi.org/10.1007/s10534-006-9065-4
  187. Tolcher, A. W., C. Aylesworth, J. Rizzo, E. Izbicka, E. Campbell, J. Kuhn, G. Weiss, D. D. Von Hoff, and E. K. Rowinsky. 2000. A phase I study of rhizoxin (NSC 332598) by 72-h continuous intravenous infusion in patients with advanced solid tumors. Ann. Oncol. 11: 333-338 https://doi.org/10.1023/A:1008398725442
  188. Tran Van, V., O. Berge, S. Ngo Ke, J. Balandreau, and T. Heulin. 2000. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield component in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273-284 https://doi.org/10.1023/A:1014986916913
  189. Trust, T. J. 1975. Antibacterial activity of tropolone. Antimicrob. Agents Chemother. 7: 500-506 https://doi.org/10.1128/AAC.7.5.500
  190. Tsuruo, T., T. Oh-hara, H. Iida, S. Tsukagoshi, Z. Sato, I. Matsuda, S. Iwasaki, S. Okuda, F. Shimizu, K. Sasagawa, M. Fukami, K. Fukuda, and M. Arakawa. 1986. Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristineresistant sublines. Cancer Res. 46: 381-385
  191. Tuanyok, A., M. Tom, J. Dunbar, and D. E. Woods. 2006. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect. Immun. 74: 5465-5476 https://doi.org/10.1128/IAI.00737-06
  192. Ulrich, R. L., D. Deshazer, E. E. Brueggemann, H. B. Hines, P. C. Oyston, and J. A. Jeddeloh. 2004. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J. Med. Microbiol. 53: 1053-1064 https://doi.org/10.1099/jmm.0.45661-0
  193. Ulrich, R. L., D. Deshazer, H. B. Hines, and J. A. Jeddeloh. 2004. Quorum sensing: A transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect. Immun. 72: 6589-6596 https://doi.org/10.1128/IAI.72.11.6589-6596.2004
  194. Ulrich, R. L., H. B. Hines, N. Parthasarathy, and J. A. Jeddeloh. 2004. Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J. Bacteriol. 186: 4350-4360 https://doi.org/10.1128/JB.186.13.4350-4360.2004
  195. Upadhyay, A., C. Williams, A. C. Gill, D. L. Philippe, K. Davis, L. A. Taylor, M. P. Stevens, E. E. Galyov, and S. Bagby. 2004. Biophysical characterization of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei. Biochim. Biophys. Acta 1698: 111-119 https://doi.org/10.1016/j.bbapap.2003.11.004
  196. Ura, H., N. Furuya, K. Iiyama, M. Hidaka, K. Tsuchiya, and N. Matsuyama. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72: 98-103 https://doi.org/10.1007/s10327-005-0256-6
  197. Urakami, T., C. Ito-Yoshida, H. Araki, T. Kijima, K.-I. Suzuki, and K. Komagata. 1994. Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int. J. Syst. Bacteriol. 44: 235-245 https://doi.org/10.1099/00207713-44-2-235
  198. Valade, E., F. M. Thibault, Y. P. Gauthier, M. Palencia, M. Y. Popoff, and D. R. Vidal. 2004. The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J. Bacteriol. 186: 2288-2294 https://doi.org/10.1128/JB.186.8.2288-2294.2004
  199. Valverde, A., P. Delvasto, A. Peix, E. Velazquez, I. Santa- Regina, A. Ballester, C. Rodriguez-Barrueco, C. Garcia- Balboa, and J. M. Igual. 2006. Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil. Int. J. Syst. Evol. Microbiol. 56: 2421-2425 https://doi.org/10.1099/ijs.0.64498-0
  200. Vandamme, P., B. Holmes, M. Vancanneyt, T. Coenye, B. Hoste, R. Coopman, H. Revets, S. Lauwers, M. Gillis, K. Kersters, and J. R. Govan. 1997. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol. 47: 1188-1200 https://doi.org/10.1099/00207713-47-4-1188
  201. Vandamme, P., E. Mahenthiralingam, B. Holmes, T. Coenye, B. Hoste, P. De Vos, D. Henry, and D. P. Speert. 2000. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J. Clin. Microbiol. 38: 1042-1047
  202. Vandamme, P., J. Goris, W. M. Chen, P. de Vos, and A. Willems. 2002. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst. Appl. Microbiol. 25: 507-512 https://doi.org/10.1078/07232020260517634
  203. Vandamme, P., D. Henry, T. Coenye, S. Nzula, M. Vancanneyt, J. J. LiPuma, D. P. Speert, J. R. Govan, and E. Mahenthiralingam. 2002. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol. Med. Microbiol. 33: 143-149 https://doi.org/10.1111/j.1574-695X.2002.tb00584.x
  204. Vasil, M. L., D. P. Krieg, J. S. Kuhns, J. W. Ogle, V. D. Shortridge, R. M. Ostroff, and A. I. Vasil. 1990. Molecular analysis of hemolytic and phospholipase C activities of Pseudomonas cepacia. Infect. Immun. 58: 4020-4029
  205. Vermis, K., T. Coenye, J. J. LiPuma, E. Mahenthiralingam, H. J. Nelis, and P. Vandamme. 2004. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int. J. Syst. Evol. Microbiol. 54: 689-691 https://doi.org/10.1099/ijs.0.02888-0
  206. Viallard, V., I. Poirier, B. Cournoyer, J. Haurat, S. Wiebkin, K. Ophel-Keller, and J. Balandreau. 1998. Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int. J. Syst. Bacteriol. 48: 549-563 https://doi.org/10.1099/00207713-48-2-549
  207. Visca, P., A. Ciervo, V. Sanfilippo, and N. Orsi. 1993. Ironregulated salicylate synthesis by Pseudomonas spp. J. Gen. Microbiol. 139: 1995-2001 https://doi.org/10.1099/00221287-139-9-1995
  208. Visca, P., A. Ciervo, and N. Orsi. 1994. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. J. Bacteriol. 176: 1128-1140 https://doi.org/10.1128/jb.176.4.1128-1140.1994
  209. Visser, M. B., S. Majumdar, E. Hani, and P. A. Sokol. 2004. Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect. Immun. 72: 2850-2857 https://doi.org/10.1128/IAI.72.5.2850-2857.2004
  210. Ward, O. P. and M. Moo-Young. 1989. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237-274 https://doi.org/10.3109/07388558909148194
  211. Weinberg, E. D. 1978. Iron and infection. Microbiol. Rev. 42: 45-66
  212. Weingart, C. L. and A. M. Hooke. 1999. Regulation of expression of the nonhemolytic phospholipase C of Burkholderia cepacia. Curr. Microbiol. 39: 336-341 https://doi.org/10.1007/s002849900468
  213. Weingart, C. L. and A. M. Hooke. 1999. A nonhemolytic phospholipase C from Burkholderia cepacia. Curr. Microbiol. 38: 233-238 https://doi.org/10.1007/PL00006793
  214. Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81: 357-364 https://doi.org/10.1023/A:1020592802234
  215. Wigley, P. and N. F. Burton. 2000. Multiple chromosomes in Burkholderia cepacia and B. gladioli and their distribution in clinical and environmental strains of B. cepacia. J. Appl. Microbiol. 88: 914-918 https://doi.org/10.1046/j.1365-2672.2000.01033.x
  216. Wilsher, M. L., J. Kolbe, A. J. Morris, and D. F. Welch. 1997. Nosocomial acquisition of Burkholderia gladioli in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 155: 1436-1440 https://doi.org/10.1164/ajrccm.155.4.9105090
  217. Wilson, T., C. J. Rabie, J. E. Fincham, P. S. Steyn, and M. A. Schipper. 1984. Toxicity of rhizonin A, isolated from Rhizopus microsporus, in laboratory animals. Food Chem. Toxicol. 22: 275-281 https://doi.org/10.1016/0278-6915(84)90006-1
  218. Yabuuchi, E., Y. Kosako, H. Oyaizu, I. Yano, H. Hotta, Y. Hashimoto, T. Ezaki, and M. Arakawa. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36: 1251- 1275 https://doi.org/10.1111/j.1348-0421.1992.tb02129.x
  219. Yang, H., C. D. Kooi, and P. A. Sokol. 1993. Ability of Pseudomonas pseudomallei malleobactin to acquire transferrin-bound, lactoferrin-bound, and cell-derived iron. Infect. Immun. 61: 656-662
  220. Yang, H. C., W. T. Im, K. K. Kim, D. S. An, and S. T. Lee. 2006. Burkholderia terrae sp. nov., isolated from a forest soil. Int. J. Syst. Evol. Microbiol. 56: 453-457 https://doi.org/10.1099/ijs.0.63968-0
  221. Yasuta, T., S. Okazaki, H. Mitsui, K.-I. Yuhashi, H. Ezura, and K. Minamisawa. 2001. DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii. Appl. Environ. Microbiol. 67: 4999-5009 https://doi.org/10.1128/AEM.67.11.4999-5009.2001
  222. Yilmaz, E. 2004. Chitosan: A versatile biomaterial. Adv. Exp. Med. Biol. 553: 59-68
  223. Ying, J., T. Yoshihara, A. Ichihara, S. Ishikuri, and H. Uchino. 1996. Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D- 202. Tetrahedron Lett. 37: 1039-1042 https://doi.org/10.1016/0040-4039(95)02342-9
  224. Yoo, S. H., B. Y. Kim, H. Y. Weon, S. W. Kwon, S. J. Go, and E. Stackebrandt. 2007. Burkholderia soli sp. nov., isolated from soil cultivated with Korean ginseng. Int. J. Syst. Evol. Microbiol. 57: 122-127 https://doi.org/10.1099/ijs.0.64471-0
  225. Yuhashi, K., N. Ichikawa, H. Ezura, S. Akao, Y. Minakawa, N. Nukui, T. Yasuta, and K. Minamisawa. 2000. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol. 66: 2658-2663 https://doi.org/10.1128/AEM.66.6.2658-2663.2000
  226. Zazimalova, E. and R. M. Napier. 2003. Points of regulation for auxin action. Plant Cell Rep. 21: 625-634
  227. Zhang, H., S. Hanada, T. Shigematsu, K. Shibuya, Y. Kamagata, T. Kanagawa, and R. Kurane. 2000. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50: 743-749 https://doi.org/10.1099/00207713-50-2-743
  228. Zhao, N., C. Qu, E. Wang, and W. Chen. 1995. Phylogenetic evidence for the transfer of Pseudomonas cocovenenans (van Damme et al., 1960) to the genus Burkholderia as Burkholderia cocovenenans (van Damme et al., 1960) comb. nov. Int. J. Syst. Bacteriol. 45: 600-603 https://doi.org/10.1099/00207713-45-3-600
  229. Zhou, H., F. Yao, D. P. Roberts, and T. G. Lessie. 2003. AHL-deficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr. Microbiol. 47: 174-179 https://doi.org/10.1007/s00284-002-3926-z