A Green Fluorescent Protein-based Whole-Cell Bioreporter for the Detection of Phenylacetic Acid

  • Kim, Ju-Hyun (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Jeon, Che-Ok (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University)
  • 발행 : 2007.10.30

초록

Phenylacetic acid (PAA) is produced by many bacteria as an antifungal agent and also appears to be an environmentally toxic chemical. The object of this study was to detect PAA using Pseudomonas putida harboring a reporter plasmid that has a PAA-inducible promoter fused to a green fluorescent protein (GFP) gene. Pseudomonas putida KT2440 was used to construct a green fluorescent protein-based reporter fusion using the paaA promoter region to detect the presence of PAA. The reporter strain exhibited a high level of gfp expression in minimal medium containing PAA; however, the level of GFP expression diminished when glucose was added to the medium, whereas other carbon sources, such as succinate and pyruvate, showed no catabolic repression. Interestingly, overexpression of a paaF gene encoding PAA-CoA ligase minimized catabolic repression. The reporter strain could also successfully detect PAA produced by other PAA-producing bacteria. This GFP-based bioreporter provides a useful tool for detecting bacteria producing PAA.

키워드

참고문헌

  1. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Sruthl. 1999. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York, N.Y., U.S.A
  2. Bartolomé-Martín, D., E. Martínez-García, V. Mascaraque, J. Rubio, J. Perera, and S. Alonso. 2004. Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene 341: 167-179 https://doi.org/10.1016/j.gene.2004.06.042
  3. Burlage, R. S. 1997. Emerging technologies: Bioreporters, biosensors and microprobes, pp. 115-123. In Guy R. Kundsen, Michael J. McInerney, Linda D. Stetzenbach, and Michael V. Walter (eds.), Manual of Environmental Microbiology. ASM Press, Washington, D.C
  4. Collier, D. N., P. W. Hager, and P. V. Phibbs Jr. 1996. Catabolite repression control in Pseudomonads. Res. Microbiol. 147: 551-561 https://doi.org/10.1016/0923-2508(96)84011-3
  5. Ferrandez, A., B. Miñambres, B. García, E. R. Olivera, J. M. Luengo, J. L. García, and E. Díaz. 1998. Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J. Biol. Chem. 273: 25974-25986 https://doi.org/10.1074/jbc.273.40.25974
  6. Ferrandez, A., J. L. García, and E. Díaz. 2000. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J. Biol. Chem. 275: 12214-12222 https://doi.org/10.1074/jbc.275.16.12214
  7. Garcia, B., E. R. Olivera, B. Miñambres, D. Carnicero, C. Muniz, G. Naharro, and J. M. Luengo. 2000. Phenylacetylcoenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U. Appl. Environ. Microbiol. 66: 4575-4578 https://doi.org/10.1128/AEM.66.10.4575-4578.2000
  8. Garcia, M., F. L. Juan, B. Ana, P. A. Juan, L. M. Jose, and R. Fernando. 2004. The Pseudomonas putida crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186: 1337-1344 https://doi.org/10.1128/JB.186.5.1337-1344.2004
  9. Hwang, B. K., S. W. Lim, B. S. Kim, J. Y. Lee, and S. S. Moon. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67: 3739-3745 https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  10. Jimenez, J. I., B. Minambres, J. L. Garcia, and E. Diaz. 2002. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol. 4: 824-841 https://doi.org/10.1046/j.1462-2920.2002.00370.x
  11. Kang, Y.-S., Y. Kim, C. Jeon, and W. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825
  12. Kawazu, K., H. Zhang, H. Yamashita, and H. Kanzaki. 1996. Relationship between the athogenicity of the pine wood nematode, Bursaphelenchus xylophilus, and phenylacetic acid production. Biosci. Biotechnol. Biochem. 60: 1413-1415 https://doi.org/10.1271/bbb.60.1413
  13. Kim, H. S., T. S. Kang, J. S. Hyun, and H. S. Kang. 2004. Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP-cAMP receptor protein complex. J. Biol. Chem. 279: 33253-33262 https://doi.org/10.1074/jbc.M404348200
  14. Kim, Y., J.-Y. Cho, J.-H. Kuk, J.-H. Moon, J.-I. Cho, Y.-C. Kim, and K.-H. Park. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, chungkook-jang. Curr. Microbiol. 48: 312-317 https://doi.org/10.1007/s00284-003-4193-3
  15. Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop Jr., and K. M. Peterson. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176 https://doi.org/10.1016/0378-1119(95)00584-1
  16. Lee, K., E. K. Ryu, K. S. Choi, M. C. Cho, J. J. Jeong, E. N. Choi, S. Lee, D.-Y. Yoon, I. Hwang, and C.-K. Kim. 2006. Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: Expression of the regulatory todST genes as a factor for catabolic adaptation. J. Microbiol. 44: 192-199
  17. Lee, Y., E. Ahn, S. Park, E. L. Madsen, C. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390
  18. Lohrke, S. M., S. Nechaev, H. Yang, K. Severinov, and S. J. Jin. 1999. Transcriptional activation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens rpoA gene, encoding the alpha subunit of RNA polymerase. J. Bacteriol. 181: 4533-4539
  19. Luengo, J. M., J. L. García, and E. R. Olivera. 2001. The phenylacetyl CoA catabolon: A complex catabolic unit with broad biotechnological application. Mol. Microbiol. 39: 1434-1442 https://doi.org/10.1046/j.1365-2958.2001.02344.x
  20. Mao, S., S.-J. Lee, H. Hwangbo, Y.-W. Kim, K.-H. Park, G.-Y. Cha, R.-D. Park, and K.-Y. Kim. 2005. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53: 358-364 https://doi.org/10.1007/s00284-005-0333-2
  21. Mencía, M., M. Monsalv, F. Rojo, and M. Salas. 1998. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase $\alpha$ subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator. J. Mol. Biol. 275: 177-190 https://doi.org/10.1006/jmbi.1997.1463
  22. Minambres, B., H. Martinez-Blanco, E. R. Olivera, B. Garcia, B. Diez, J. L. Barredo, M. A. Moreno, C. Schleissner, F. Salto, and J. M. Luengo. 1996. Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. J. Biol. Chem. 271: 33531-33538 https://doi.org/10.1074/jbc.271.52.33531
  23. Mitchell, R. J., J.-M. Ahn, and M. Gu. 2005. Comparison of Photorhabdus luminescens and Vibrio fisheri lux fusion to study gene expression patterns. J. Microbiol. Biotechnol. 15: 48-54
  24. Oh, E.-T., J.-S. So, B.-H. Kim, J.-S. Kim, and S.-C. Koh. 2004. Green fluorescent protein as a marker for monitoring a pentachlorophenol degrader Sphingomonas chlorophenolica ATCC39723. J. Microbiol. 42: 243-247
  25. Olivera, E. R., B. Miñambres, B. García, C. Muñiz, M. A. Moreno, A. Ferrández, E. Díaz, J. L. García, and J. M. Luengo. 1998. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon. Proc. Natl. Acad. Sci. USA 95: 6419-6424
  26. Park, M., J. Bae, J. Han, E. Lee, S.-G. Lee, and S. Park. 2006. Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040
  27. Park, S.-H., D.-H. Lee, K.-H. OH, K. Lee, and C.-K. Kim. 2002. Detection of aromatic pollutants by bacterial biosensors bearing gene fusions constructed with the dnaK promoter of Pseudomonas sp. DJ-12. J. Microbiol. Biotechnol. 12: 417-422
  28. Peso-Santos, T., D. Bartolomé-Martín, C. Fernandez, S. Alonso, J. L. García, E. Diaz, V. Shingler, and J. Perera. 2006. Coregulation by phenylacetyl-coenzyme A-responsive paaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2. J. Bacteriol. 188: 4812-4821 https://doi.org/10.1128/JB.00176-06
  29. Schleissner, C., E. R. Olivera, M. Fernandez-Valverde, and J. M. Leuengo. 1994. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: Biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate. J. Bacteriol. 176: 7667-7676 https://doi.org/10.1128/jb.176.24.7667-7676.1994
  30. Simon, R., U. Priefer, and A. Pufler. 1983. A broad host-range mobilization system in Gram-negative bacteria. Biotechnology(NY) 1: 784-791 https://doi.org/10.1038/nbt1183-784
  31. Yin, S., M. Fuanthong, W. P. Laratta, and J. P. Shapleigh. 2003. Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl. Environ. Microbiol. 69: 3938-3944 https://doi.org/10.1128/AEM.69.7.3938-3944.2003
  32. Zumin, Q., H. Yunbing, Z. Dianmo, and L. Fufang. 2005. Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J. Nat. Gas Chem. 14: 40-44