References
- Alvi, K. A., D. D. Baker, V. Stienecker, M. Hosken, and B. G. Nair. 2000. Identification of inhibitors of inducible nitric oxide synthase from microbial extracts. J. Antibiot. 53: 496-501 https://doi.org/10.7164/antibiotics.53.496
- Bredt, D. S. and S. H. Snyder. 1994. Nitric oxide: A physiologic messenger molecule. Annu. Rev. Biochem. 63: 175-195 https://doi.org/10.1146/annurev.bi.63.070194.001135
- Chabrier, P.-E., C. Demerle-Pallardy, and M. Auguet. 1999. Nitric oxide synthases: Targets for therapeutic strategies in neurological diseases. Cell. Mol. Life Sci. 55: 1029-1035 https://doi.org/10.1007/s000180050353
- Davey, D. D., M. Alder, D. Arnaiz, K. Eagen, S. Erickson, W. Guiford, M. Kenrick, M. M. Morrissey, M. Ohlmeyer, G. Pan, V. M. Paradkar, J. Parkinson, M. Polokoff, K. Saionz, C. Santos, B. Subramanyam, R. Vergona, R. G. Wei, M. Whitlow, B. Ye, J. J. Devlin, and G. Phillips. 2007. Design, synthesis, and activity of 2-imidazol-1-ylpyrimidine derived inducible nitric oxide synthase dimerization inhibitors. J. Med. Chem. 50: 1146-1157 https://doi.org/10.1021/jm061319i
- Fukushima, K., K. Yazawa, and T. Arai. 1972. Biological activities of albonoursin. J. Antibiot. 26: 175-176
- Gonzalez-Scarano, F. and G. Baltuch. 1999. Microglial as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22: 219-240 https://doi.org/10.1146/annurev.neuro.22.1.219
-
Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [
$^{15}N$ ] nitrate in biological fluids. Anal. Biochem. 126: 131-138 https://doi.org/10.1016/0003-2697(82)90118-X - Griffith, O. W. and D. J. Stuehr. 1995. Nitric oxide synthases: Properties and catalytic mechanism. Annu. Rev. Physiol. 57: 707-736 https://doi.org/10.1146/annurev.ph.57.030195.003423
- Gross, S. S. and M. S. Wolin. 1995. Nitric oxide: Pathophysiological mechanisms. Annu. Rev. Physiol. 57: 737-769 https://doi.org/10.1146/annurev.ph.57.030195.003513
- Hobbs A. J., A. Higgs, and S. Moncada. 1999. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39: 191-220 https://doi.org/10.1146/annurev.pharmtox.39.1.191
- Kim, H. J., J. H. Kim, C. H. Lee, and H. J. Kwon. 2006. Gentisyl alcohol, an antioxidant from microbial metabolite, induces angiogenesis in vitro. J. Microbiol. Biotechnol. 16: 475-479
- Kim, W.-G., I.-J. Ryoo, S.-H. Park, D.-S. Kim, S. Lee, K.-C. Park, and I.-D. Yoo. 2005. Terrein, a melanin biosynthesis inhibitor from Penicillium sp. 2013. J. Microbiol. Biotechnol. 15: 891-894
- Kim, W.-G., N.-K. Song, and I.-D. Yoo. 2002. Trienomycin G, a new inhibitor of nitric oxide production in microglia cells from Streptomyces sp. 91614. J. Antibiot. 55: 204-207 https://doi.org/10.7164/antibiotics.55.204
- Kimura, Y., A. Sawada, M. Kuramata, M. Kusano, S. Fujioka, T. Kawano, and A. Shimada. 2005. Brevicompanine C, cyclo-(D-Ile-L-Trp), and cyclo-(D-Leu-L-Trp), plant growth regulators from Penicillium brevicompactum. J. Nat. Prod. 68: 237-239 https://doi.org/10.1021/np040178p
- Kimura, Y., K. Tani, A. Kojima, G. Sotoma, K. Okada, and A. Shimada. 1996. Cycol-(L-tryptophyl-L-phenylalanyl), a plant growth regulator produced by the fungus Penicillium sp. Phytochemistry 41: 665-669 https://doi.org/10.1016/0031-9422(95)00693-1
- Kozlovskii, A. G., N. G. Vinokurova, V. P. Zhelifonova, and V. M. Adanin. 1997. Secondary metabolites of fungi belonging to the species Penicillium janczewskii. Prikladnaya Biokhimiya I Mikrobiologiya 33: 70-74
- Li, X., S.-K. Kim, J. S. Kang, H. D. Choi, and B. W. Son. 2006. Radical scavenging hydroxyphenyl ethanoic acid derivatives from a marine-derived fungus. J. Microbiol. Biotechnol. 16: 637-638
- Marletta, M. A. 1994. Nitric oxide synthase: Aspects concerning structure and catalysis. Cell 78: 927-930 https://doi.org/10.1016/0092-8674(94)90268-2
- Nathan, C. 1997. Inducible nitric oxide synthase: What difference does it make? J. Clin. Invest. 100: 2417-2423 https://doi.org/10.1172/JCI119782
- Nathan, C. and Q. W. Xie. 1994. Nitric oxide synthases: Roles, tolls, and controls. Cell 78: 915-918 https://doi.org/10.1016/0092-8674(94)90266-6
- Prasad, C. 1995. Bioactive cyclic peptides. Peptides 16: 151-164 https://doi.org/10.1016/0196-9781(94)00017-Z
- Salerno, I., V. Sorrenti, C. Di Giacomo, G. Romeo, and M. A. Siracusa. 2002. Progress in the development of selective nitric oxide synthase inhibitors. Curr. Pharm. Des. 8: 177-200 https://doi.org/10.2174/1381612023396375
- Shimi, I. R. and S. Fathey. 1981. Isolation of cairomycins A and C. Antimicrobiol. Agents Chemother. 19: 941-944 https://doi.org/10.1128/AAC.19.6.941
- Song, H. H., J.-H. Ahn, Y. H. Lim, and C. Lee. 2006. Analysis of beauvericin and unusual enniatins co-produced by Fusarium oxysporum FB1501 (KFCC 11363P). J. Microbiol. Biotechnol. 16: 1111-1119
- Song, M. K., I. K. Hwang, M. J. Rosenthal, D. M. Harris, D. T. Yamaguchi, I. Yip, and V. L. W. Go. 2003. Antihyperglycemic activity of zinc plus cyclo(his-pro) in genetically diabetic Goto-Kakizaki and aged rats. Exp. Biol. Med. 228: 1338-1345 https://doi.org/10.1177/153537020322801112
- Song, M. K., M. J. Rosenthal, S. Hong, D. M. Harris, I. Hwang, I. Yip, M. S. Golub, M. E. Ament, and V. L. Go. 2001. Synergistic antidiabetic activities of zinc, cyclo(hispro), and arachinoic acid. Metabolism 50: 53-59 https://doi.org/10.1053/meta.2001.19427
- Zelenkova, N. F., N. G. Vinokurova, and M. U. Arinbasarov. 2003. Analysis of secondary metabolites of microscopic fungi of the genus Penicillium by chromatographic techniques. Appl. Biochem. Microbiol. 39: 52-62
- Zhang, D., X. Li, J. S. Kang, H. D. Choi, J. H. Jung, and B. W. Son. 2007. Redoxcitrinin, a biogenetic precursor of citrinin from marine isolate of fungus Penicillium sp. J. Microbiol. Biotechnol. 17: 865-867
- Zielasek, J. and H.-P. Hartung. 1996. Molecular mechanisms of microglial activation. Adv. Neuroimmunol. 6: 191-222 https://doi.org/10.1016/0960-5428(96)00017-4