Population Dynamics of Phage-Host System of Microlunatus phosphovorus Indigenous in Activated Sludge

  • Lee, Sang-Hyon (Institute of Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo) ;
  • Otawa, Kenichi (Institute of Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo) ;
  • Onuki, Motoharu (Institute of Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo) ;
  • Satoh, Hiroyasu (Institute of Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo) ;
  • Mino, Takashi (Institute of Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo)
  • Published : 2007.10.30

Abstract

Monitoring of the phage-host system of Microlunatus phosphovorus indigenous in activated sludge was attempted. A laboratory-scale activated sludge process was operated for 5 weeks with synthetic wastewater. The phage-host system population in the process was monitored by plaque assay and FISH methods at every 3 days. During the process operation, the phage-host system populations were more or less steady, except for 1 week in the middle of the operation. In that period, initially M. phosphovorus decreased significantly and its lytic bacteriophages increased, and then M. phosphovorus increased back to its original level while its lytic bacteriophages decreased. This observation suggests that lytic bacteriophages should be considered as one of the biological factors affecting the bacterial population dynamics in activated sludge processes.

Keywords

References

  1. Adams, M. H. 1959. Bacteriophages. Interscience Publisher, New York
  2. Amann, R. I., L. Krumholz, and D. A. Stah. 1990. Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770 https://doi.org/10.1128/jb.172.2.762-770.1990
  3. Ewert, D. L. and M. J. Paynter. 1980. Enumeration of bacteriophages and host bacteria in sewage and the activatedsludge treatment process. Appl. Environ. Microbiol. 39: 576-583
  4. Fuhrman, J. A. and M. Schwalbach. 2003. Viral influence on aquatic bacterial communities. Biol. Bull. 204: 192-195 https://doi.org/10.2307/1543557
  5. Hantula, J., A. Kurki, P. Vuoriranta, and B. H. Bamford. 1991. Ecology of bacteriophages infecting activated sludge bacteria. Appl. Environ. Microbiol. 57: 2147-2151
  6. Kawaharasaki, M., T. Kanagawa, H. Tanaka, and K. Nakamura. 1998. Development and application of 16S rRNA-targeted oligonucleotide probe for detection of the phosphateaccumulating bacterium Microlunatus phosphovorus in an enhanced biological phosphorus removal process. Water Sci. Technol. 37: 481-484 https://doi.org/10.1016/S0273-1223(98)00173-5
  7. Khan, M. A., H. Satoh, H. Katayama, F. Kurisu, and T. Mino. 2002. Bacteriophages isolated from activated sludge process and their polyvalency. Water Res. 36: 3364-3370 https://doi.org/10.1016/S0043-1354(02)00029-5
  8. Kim, J. D. and C. G. Lee. 2006. Antialgal effect of a novel polysaccharolytic Sinorhizobium kostiense AFK-13 on Anabaena flos-aquae causing water bloom. J. Microbiol. Biotechnol. 16: 1613-1621
  9. Kim, W.-K., R. Cui, and D. Jahng. 2005. Enrichment of ammonia-oxidizing bacteria for efficient nitrification of wastewater. J. Microbiol. Biotechnol. 15: 772-779
  10. Lee, S. H., H. Satoh, H. Katayama, and T. Mino. 2004. Isolation, and physiological characterization of bacteriophages from enhanced biological phosphorus removal activated sludge and their putative role. J. Microbiol. Biotechnol. 14: 730-736
  11. Lee, S. H., M. Onuki, H. Satoh, and T. Mino. 2006. Isolation and characterization of bacteriophages specific to Microlunatus phosphovorus and their application for the rapid host detection. Lett. Appl. Microbiol. 42: 259-264 https://doi.org/10.1111/j.1472-765X.2006.01840.x
  12. Lee, S. H., K. Otawa, M. Onuki, H. Satoh, and T. Mino. 2006. Dynamics behavior of phage-host system related to Microlunatus phosphovorus in activated sludge with host inoculation. J. Microbiol. Biotechnol. 16: 1518-1522
  13. Lee, Y.-O., J.-H. Park, and J.-K. Park. 2005. Microbial characterization of excessive growing biofilm in sewer lines using molecular technique. J. Microbiol. Biotechnol. 15: 938-945
  14. Nakamura, K., A. Hiraishi, Y. Yoshimi, M. Kawaharasaki, K. Masuda, and Y. Kamagata. 1995. Microlunatus phosphovorus gen. nov., sp. nov., a new Gram-positive polyphosphateaccumulating bacterium isolated from activated sludge. Int. J. Syst. Bacteriol. 45: 17-22 https://doi.org/10.1099/00207713-45-1-17
  15. Ogata, S., H. Miyamoto, and S. Hayashida. 1980. An investigation of the influence of bacteriophages on the bacterial flora and purification powers of activated sludge. J. Gen. Appl. Microbiol. 26: 97-108 https://doi.org/10.2323/jgam.26.97
  16. Otawa, K., S. H. Lee, M. Onuki, H. Satoh, and T. Mino. 2007. Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes. Microbial Ecol. 53: 143-152 https://doi.org/10.1007/s00248-006-9150-9
  17. Seviour, R. J., T. Mino, and M. Onuki. 2003. The microbiology of biological phosphorous removal in activated sludge. FEMS Microbiol. Rev. 27: 99-127 https://doi.org/10.1016/S0168-6445(03)00021-4
  18. Suttle, C. A. 1994. The significance of viruses to mortality in aquatic microbial communities. Microbial Ecol. 28: 237-243 https://doi.org/10.1007/BF00166813
  19. Wommack, K. E. and R. R. Colwell. 2000. Virioplankton: Viruses in aquatic ecosystem. Microbiol. Mol. Biol. Rev. 64: 69-114 https://doi.org/10.1128/MMBR.64.1.69-114.2000