Functional Assembly of Recombinant Human Ferritin Subunits in Pichia pastoris

  • Lee, Jung-Lim (Department of Food Science, Massachusetts Agricultural Experiment Station, University of Massachusetts) ;
  • Park, Cheon-Seok (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University)
  • Published : 2007.10.30

Abstract

Ferritin is an iron storage protein found in most living organisms as a natural assembled macromolecule. For studying the functional ability of the ferritin assembly, human H- and L-ferritins were expressed and purified from Pichia pastoris strain GS115. The recombinant H- and L-ferritins showed a globular form with transmission electron microscopy. The rate of iron uptake for H-ferritin was significantly faster than that for the L-ferritin in vitro. By gel permeation chromatography analysis, recombinant ferritins were confirmed as multimeric subunits with high molecular weight and it was indicated that assembled subunits were able to store iron in vivo.

Keywords

References

  1. Andrews, P. 1964. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem. J. 91: 222-233 https://doi.org/10.1042/bj0910222
  2. Arosio, P., T. G. Adelman, and J. W. Drysdale. 1978. On ferritin heterogeneity. J. Biol. Chem. 253: 4451-4458
  3. Bo, X., Y. J. Yang, and Z. X. Huang. 2006. Cloning and overexpression of gene encoding the pullulanase from Bacillus naganoensis in Pichia pastoris. J. Microbiol. Biotechnol. 16: 1185-1191
  4. Cregg, J. M., T. S. Vedvick, and W. C. Raschke. 1999. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (NY) 11: 905-910 https://doi.org/10.1038/nbt0893-905
  5. Grace, J. E. Jr., M. E. Van Eden, and S. D. Aust. 2000. Production of recombinant human apoferritin heteromers. Arch. Biochem. Biophys. 384: 116-122 https://doi.org/10.1006/abbi.2000.2068
  6. Guo, J. H., M. Abedi, and S. D. Aust. 1996. Expression and loading of recombinant heavy and light chain homopolymers of rat liver ferritin. Arch. Biochem. Biophys. 335: 197-204 https://doi.org/10.1006/abbi.1996.0498
  7. Harrison, P. M. and P. Arosio. 1996. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275: 161-203 https://doi.org/10.1016/0005-2728(96)00022-9
  8. Lee, J. L., H. S. Song, H, J. Kim, J. H. Park, D. K. Chung, C. S. Park, D. Jeoung, and H. Y. Kim. 2003. Functional expression and production of human H-ferritin in Pichia pastoris. Biotechnol. Lett. 25: 1019-1023 https://doi.org/10.1023/A:1024193104858
  9. Lee, J. L., S. N. Yang, C. S. Park, D. Jeoung, and H. Y. Kim. 2004. Purification and its glycosylation pattern of recombinant L-ferritin in Pichia pastoris. J. Microbiol. Biotechnol. 14: 68-73
  10. Levi, S., A. Luzzago, G.. Cesareni, A. Cozzi, F. Franceschinelli, A. Albertini, and P. Arosio. 1988. Mechanism of ferritin iron uptake: Activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J. Biol. Chem. 263: 18086-18092
  11. Levi, S., J. Salfeld, F. Franceschinelli, A. Cozzi, M. H. Dorner, and P. Arosio. 1989. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28: 5179-5184 https://doi.org/10.1021/bi00438a040
  12. Levi, S., P. Santambrogio, B. Corsi, A. Cozzi, and P. Arosio. 1996. Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Biochem. J. 317: 467-473 https://doi.org/10.1042/bj3170467
  13. Lieu, H. Y., H. S. Song, S. N. Yang, J. H. Kim, H. J. Kim, Y. D. Park, C. S. Park, and H. Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
  14. Ro, H. S., M. S. Lee, M. S. Hahm, H. S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202-205
  15. Ro, H. S., H. K. Park, M. G. Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258
  16. Santambrogio, P., A. Cozzi, S. Levi, E. Rovida, F. Magni, A. Albertini, and P. Arosio. 2000. Functional and immunological analysis of recombinant mouse H- and L-ferritins from Escherichia coli. Protein Expr. Purif. 19: 212-218 https://doi.org/10.1006/prep.2000.1212
  17. Theil, E. C. 1987. Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56: 289-315 https://doi.org/10.1146/annurev.bi.56.070187.001445
  18. Wade, V. J., S. Levi, P. Arosio, A. Treffry, P. M. Harrison, and S. Mann. 1991. Influence of site-directed modifications on the formation of iron cores in ferritin. J. Mol. Biol. 221: 1443-1452 https://doi.org/10.1016/0022-2836(91)90944-2
  19. Waldo, G. S., J. Ling, J. Sanders-Loehr, and E. C. Theil. 1993. Formation of an Fe(III)-tyrosinate complex during biomineralization of H-subunit ferritin. Science 259: 796-798 https://doi.org/10.1126/science.8430332
  20. Wong, K. K., H. Colfen, N. T. Whilton, T. Douglas, and S. Mann. 1999. Synthesis and characterization of hydrophobic ferritin proteins. J. Inorg. Biochem. 76: 187-195 https://doi.org/10.1016/S0162-0134(99)00114-2
  21. Worwood, M. 1990. Ferritin. Blood Rev. 4: 259-269 https://doi.org/10.1016/0268-960X(90)90006-E