Development of Immunochromatography Strip-Test Using Nanocolloidal Gold-Antibody Probe for the Rapid Detection of Aflatoxin B1 in Grain and Feed Samples

  • Shim, Won-Bo (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Yang, Zheng-You (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Kim, Jung-Sook (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Kim, Ji-Young (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Kang, Sung-Jo (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Woo, Gun-Jo (Center for Food Safety Evaluation, Korea Food and Drug Administration) ;
  • Chung, Young-Chul (Division of Food Science, Jinju International University) ;
  • Eremin, Sergei A. (Division of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University) ;
  • Chung, Duck-Hwa (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University)
  • Published : 2007.10.30

Abstract

An immunochromatography (ICG) strip test using a nanocolloidal gold-antibody probe was developed and optimized for the rapid detection of aflatoxin B1 (AFB1). A monoclonal antibody specific to AFB1 was produced from the cloned hybridoma cell (AF78), coupled with nanocolloidal gold, and distributed on the conjugate pad of the ICG strip test. The visual detection limit of the ICG strip test was 0.5 ng/ml, and this method showed a cross-reaction to aflatoxin B2, G1, and G2. In total, 172 grain and feed samples were collected and analyzed by both the ICG strip test and HPLC. The results of the ICG strip test showed a good agreement with those obtained by HPLC. These results indicated that the ICG strip test has a potential use as a rapid and cost-effective screening tool for the determination of AFB1 in real samples and could be applied to the preliminary screening of mycotoxin in food and agricultural products, generating results within 15 min without complicated steps.

Keywords

References

  1. Bhatnagar, D., J. Yu, and K. C. Ehrlich. 2002. Toxins of filamentous fungi. Chem. Immunol. 81: 167-206 https://doi.org/10.1159/000058867
  2. Blesa, J., J. M. Soriano, J. C. Molto, R. Marin, and J. Manes. 2003. Determination of aflatoxins in peanuts by matrix solidphase dispersion and liquid chromatography. J. Chromatogr. A 1011: 49-54 https://doi.org/10.1016/S0021-9673(03)01102-6
  3. Calleri, E., G. Marrubini, G. Brusotti, G. Massolini, and G. Caccialanza. 2007. Development and integration of an immunoaffinity monolithic disk for the on-line solid-phase extraction and HPLC determination with fluorescence detection of aflatoxin B1 in aqueous solutions. J. Pharm. Biomed. Anal. 44: 396-403 https://doi.org/10.1016/j.jpba.2007.01.030
  4. Chandler, J., T. Gurmin, and N. Robinson. 2000. The place of gold in rapid tests. IVD Technol. 6: 37-49
  5. Cho, Y. J., D. H. Lee, D. O. Kim, W. K. Min, K. T. Bong, G. G. Lee, and J. H. Seo. 2005. Production of a monoclonal antibody against ochratoxin A and its application to immunochromatographic assay. J. Agric. Food Chem. 53: 8447-8451 https://doi.org/10.1021/jf051681q
  6. Chu, F. S., S. M. T. Hsia, and P. S. Sun. 1977. Preparation and characterization of aflatoxin B1-oxime. J. Assoc. Off. Anal. Chem. 60: 791-794
  7. Commission of the European Communities. Commission regulation (EC) no 466/2001 of 8 of March 2001 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 77: 1-6
  8. Deng, Y. P., H. Q. Zhao, and L. Jiang. 2000. Applications of nanogold particles in biomimetic engineering. China Basic Sci. 9: 11-17 (in Chinese)
  9. Devi, K. T., M. A. Mayo, K. L. Reddy, P. Delfosse, G. Reddy, S. V. Reddy, and D. V. Reddy. 1999. Production and characterization of monoclonal antibodies for aflatoxin B1. Lett. Appl. Microbiol. 29: 284-288 https://doi.org/10.1046/j.1472-765X.1999.00685.x
  10. Faulk, W. P. and G. M. Taylor. 1971. An immunocolloidal method for electron microscope. Immunocytochemistry 8: 1081-1083 https://doi.org/10.1016/0019-2791(71)90496-4
  11. Frens, G. 1973. Preparation of gold dispersions of varying particle size: Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat. Phys. Sci. 241: 20-22 https://doi.org/10.1038/physci241020a0
  12. Galfre, G., S. C. Howe, C. Milstein, G. W. Butcher, and J. C. Howard. 1977. Antibodies to major histocompatability antigens produced by hybrid cell lines. Nature 266: 550-552 https://doi.org/10.1038/266550a0
  13. Han, E. M., H. R. Park, S. J. Hu, K. S. Kwon, H. M. Lee, M. S. Ha, K. M. Kim, E. J. Ko, S. D. Ha, H. S. Chun, D. H. Chung, and D. H. Bae. 2006. Monitoring of aflatoxin B1 in livestock feeds using ELISA and HPLC. J. Microbiol. Biotechnol. 16: 643-646
  14. Hu, Y. Y., P. Zheng, Z. X. Zhang, and Y. Z. He. 2006. Determination of aflatoxins in high-pigment content samples by matrix solid-phase dispersion and high-performance liquid chromatography. J. Agric. Food Chem. 54: 4126-4130 https://doi.org/10.1021/jf0601564
  15. IARC (International Agency for Research on Cancer). 2002. Monographs on the evaluation of carcinogenic risk to human, pp. 169-366. In: Some Traditional Medicenes, Some Mycotoxins, Naphthalene and Styrene. International Agency for Research on Cancer, Lyo
  16. KFDA (Korea Food and Drug Administration). 2002. Food Code. Korea Food and Drug Administration, Seoul
  17. Kim, P. I., B. D. Erickson, and C. E. Cerniglia. 2005. A membrane-array method to detect specific human intestinal bacteria in fecal samples using reverse transcriptase-PCR and chemiluminescence. J. Microbiol. Biotechnol. 15: 310-320
  18. Kolosova, A. Y., W. B. Shim, Z. Y. Yang, S. A. Eremin, and D. H. Chung. 2006. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal. Bioanal. Chem. 384: 286-294 https://doi.org/10.1007/s00216-005-0103-9
  19. Korde, A., U. Pandey, S. Banerjee, H. D. Sarma, S. Hajare, M. Venkatesh, A. K. Sharma, and M. R. Pillai. 2003. Development of a radioimmunoassay procedure for aflatoxin B1 measurement. J. Agric. Food Chem. 51: 843-846 https://doi.org/10.1021/jf025570s
  20. Krska, R., E. Welzig, F. Berthiller, A. Molinelli, and B. Mizaikoff. 2005. Advances in the analysis of mycotoxins and its quality assurance. Food Addit. Contam. 22: 345-353 https://doi.org/10.1080/02652030500070192
  21. Lee, N. A., S. Wang, R. D. Allan, and I. R. Kennedy. 2004. A rapid aflatoxin B1 ELISA: Development and validation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. J. Agric. Food Chem. 52: 2746-2755 https://doi.org/10.1021/jf0354038
  22. Lee, W. C., S. S. Lim, B. K. Choi, and J. W. Choi. 2006. Protein array fabricated by microcontact printing for miniaturized immunoassay. J. Microbiol. Biotechnol. 16: 1216-1221
  23. Lipigorngoson, S., P. Limtrakul, M. Suttajit, and T. Yoshizawa. 2003. In-house direct cELISA for determining aflatoxin B1 in Thai corn and peanuts. Food Addit. Contam. 20: 838-845 https://doi.org/10.1080/0265203031000156060
  24. Lou, S. C., C. Patel, S. Ching, and J. Gordon. 1993. One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein(a) in plasma. Clin. Chem. 39: 619-624
  25. Moeremans, M., G. Daneels, A. V. Dijek, G. Langanger, and J. D. Mey. 1984. Sensitive visualization of antigen-antibody reactions in dot and blot immune overlay assays with immunogold and immunogold/silver staining. J. Immunol. Methods 74: 353-360 https://doi.org/10.1016/0022-1759(84)90303-X
  26. Nasir, M. S. and M. E. Jolley. 2002. Development of a fluorescence polarization assay for the determination of aflatoxins in grains. J. Agric. Food Chem. 50: 3116-3121 https://doi.org/10.1021/jf011638c
  27. Nasir, M. S. and M. E. Jolley. 2003. Fluorescence polarization (FP) assays for the determination of grain mycotoxins (Fumonisins, DON Vomitoxin and Aflatoxins). Comb. Chem. High Throughput Screen. 6: 267-273 https://doi.org/10.2174/138620703106298310
  28. Nilufer, D. and D. Boyacioglu. 2002. Comparative study of three different methods for the determination of aflatoxins in tahini. J. Agric. Food Chem. 50: 3375-3379 https://doi.org/10.1021/jf020005a
  29. Paek, S. H., S. H. Lee, J. H. Cho, and Y. S. Kim. 2000. Development of rapid one-step immunochromatographic assay. Methods 22: 53-60 https://doi.org/10.1006/meth.2000.1036
  30. Pemberton, R. M., R. Pittson, N. Biddle, G. A. Drago, and J. P. Hart. 2006. Studies towards the development of a screen-printed carbon electrochemical immunosensor array for mycotoxins: A sensor for aflatoxin B1. Anal. Lett. 39: 1573-1586 https://doi.org/10.1080/00032710600713289
  31. Roth, J. 1982. Applications of immunocolloids in light microscopy: Preparation of protein A-silver and protein Agold complexes and their applications for localization of single and multiple antigens in paraffin sections. J. Histochem. Cytochem. 30: 691-696 https://doi.org/10.1177/30.7.7050239
  32. Roth, J. 1982. The preparation of protein A-gold complexes with 3 nm and 15 nm gold particles and their use in labelling multiple antigens on ultrathin sections. Histochem. J. 14: 791-801 https://doi.org/10.1007/BF01033628
  33. Sapsford, K. E., C. R. Taitt, S. Fertig, M. H. Moore, M. E. Lassman, C. M. Maragos, and L. C. Shriver-Lake. 2006. Indirect competitive immunoassay for detection of aflatoxin B1 in corn and nut products using the array biosensor. Biosens. Bioelectron. 21: 2298-2305 https://doi.org/10.1016/j.bios.2005.10.021
  34. Sherry, J. P. 1997. Environmental immunoassays and other bioanalytical methods: Overview and update. Chemosphere 34: 1011-1025 https://doi.org/10.1016/S0045-6535(97)00403-7
  35. Shim, W. B., Z. Y. Yang, J. Y. Kim, J. G. Choi, J. H. Je, S. J. Kang, A. Y. Kolosova, S. A. Eremin, and D. H. Chung. 2006. Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples. J. Agric. Food Chem. 54: 9728-9734 https://doi.org/10.1021/jf0620057
  36. Shyu, R. H., H. F. Shyu, H. W. Liu, and S. S. Tang. 2002. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 40: 255-258 https://doi.org/10.1016/S0041-0101(01)00193-3
  37. Stroka, J., R. Van Otterdijk, and E. Anklam. 2000. Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J. Chromatogr. A 904: 251-256 https://doi.org/10.1016/S0021-9673(00)00930-4
  38. Xiulan, S., Z. Xiaolian, T. Jian, G. Xiaohong, Z. Jun, and F. S. Chu. 2006. Development of an immunochromatographic assay for detection of aflatoxin B1 in foods. Food Control 17: 256-262 https://doi.org/10.1016/j.foodcont.2004.10.007
  39. Zheng, M. Z., J. L. Richard, and J. Binder. 2006. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161: 261-273 https://doi.org/10.1007/s11046-006-0215-6