Cloning and Expression of a Parathion Hydrolase Gene from a Soil Bacterium, Burkholderia sp. JBA3

  • Kim, Tae-Sung (Environmental Biosafety Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Ahn, Jae-Hyung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Min-Kyeong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Weon, Hang-Yeon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Mi-Sun (Department of Biology, Sunchon National University) ;
  • Seong, Chi-Nam (Department of Biology, Sunchon National University) ;
  • Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2007.11.30

Abstract

A bacterium, Burkholderia sp. JBA3, which can mineralize the pesticide parathion, was isolated from an agricultural soil. The strain JBA3 hydrolyzed parathion to p-nitrophenol, which was further utilized as the carbon and energy sources. The parathion hydrolase was encoded by a gene on a plasmid that strain JBA3 harbored, and it was cloned into pUC19 as a 3.7-kbp Sau3AI fragment. The ORF2 (ophB) in the cloned fragment encoded the parathion hydrolase composed of 526 amino acids, which was expressed in E. coli DH10B. The ophB gene showed no significant sequence similarity to most of other reported parathion hydrolase genes.

Keywords

References

  1. Ahn, J. H., M. S. Kim, M. C. Kim, J. S. Lim, G. T. Lee, J. K. Yun, T. S. Kim, T. S. Kim, and J. O. Ka. 2006. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715
  2. Cheng, T. C., S. P. Harvey, and A. N. Stroup. 1993. Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl. Environ. Microbiol. 59: 3138-3140
  3. Crosa, J. H., M. E. Tolmasky, L. A. Actis, and S. Falkow. 1994. Plasmids, pp. 365-386. In Gerhardt, P. et al. (eds.), Methods for General and Molecular Bacteriology. Am. Soc. Microbiol., Washington, U.S.A
  4. Dumas, D. P., S. R. Caldwell, J. R. Wild, and F. M. Raushel. 1989. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem. 264: 19659-19665
  5. EPA. 2000. http://www.epa.gov/REDs/factsheets/p155fct.pdf
  6. Horne, I., T. D. Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3371-3376 https://doi.org/10.1128/AEM.68.7.3371-3376.2002
  7. Horne, I., T. D. Sutherland, J. G. Oakeshott, and R. J. Russell. 2002. Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilli C11. Microbiology 148: 2687-2695 https://doi.org/10.1099/00221287-148-9-2687
  8. Horne, I., X. Qiu, R. J. Russell, and J. G. Oakeshott. 2003. The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol. Lett. 222: 1-8
  9. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, H. C. Shin, T. S. Kim, T. H. Ryu, S. J. Kweon, T. S. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  10. Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  11. Korea Crop Protection Association. 2005. Agrochemical Year Book 2005
  12. Mulbry, W. W. 1992. The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1: Cloning, sequencing and expression in Escherichia coli. Gene 121: 149-153 https://doi.org/10.1016/0378-1119(92)90174-N
  13. Park, I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy) butyric acid-degrading bacteria from agricultural soils. J. Microbiol. Biotechnol. 13: 243-250
  14. Ragnarsdottir, K. V. 2000. Environmental fate and toxicology of organophophate pesticides. J. Geol. Soc. 157: 859-876 https://doi.org/10.1144/jgs.157.4.859
  15. Serdar, C. M. and D. T. Gibson. 1985. Enzymatic hydrolysis of organophosphates: Cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Bio/Technology 3: 567-571 https://doi.org/10.1038/nbt0685-567
  16. Siddavattam, D., S. Khajamohiddin, B. Manavathi, S. B. Pakala, and M. Merrick. 2003. Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69: 2533-2539 https://doi.org/10.1128/AEM.69.5.2533-2539.2003
  17. Singh, B. K. and A. Walker. 2006. Microbial degradation of organophosphorus compounds. FEMS. Microbiol. Rev. 30: 428-471 https://doi.org/10.1111/j.1574-6976.2006.00018.x
  18. Tago, K., S. Yonezawa, T. Ohkouchi, T. Ninomiya, M. Hashimoto, and M. Hayatsu. 2006. A novel organophosphorus pesticide hydrolase gene encoded on a plasmid in Burkholderia sp. strain NF100. Microbes Environ. 21: 53-57 https://doi.org/10.1264/jsme2.21.53
  19. Tago, K., S. Yonezawa, T. Ohkouchi, M. Hashimoto, and M. Hayatsu. 2006. Purification and characterization of fenitrothion hydrolase from Burkholderia sp. NF100. J. Biosci. Bioeng. 101: 80-82 https://doi.org/10.1263/jbb.101.80