Damage to the Cytoplasmic Membrane and Cell Death Caused by Lycopene in Candida albicans

  • Sung, Woo-Sang (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, In-Seon (The Center for Traditional Microorganism Resources (TMR), Keimyunjg University) ;
  • Lee, Dong-Gun (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • 발행 : 2007.11.30

초록

Lycopene, an acyclic carotenoid found in tomatoes (Lycopersicon esculentum) and a number off fruits, has shown various biological properties, but its antifungal effects remain poorly understood. The current study investigated the antifungal activity of lycopene and its mode of action. Lycopene showed potent antifungal effects toward pathogenic fungi, tested in an energy-independent manner, with low hemolytic effects against human erythrocytes. To confirm the antifungal effects of lycopene, its effects on the dimorphism of Candida albicans induced by fetal bovine serum (FBS), which plays a key role in the pathogenesis of a host invasion, were investigated. The results showed that lycopene exerted potent antifungal activity on the serum-induced mycelia of C. albicans. To understand the antifungal mode of action of lycopene, the action of lycopene against fungal cell membranes was examined by FACScan analysis and glucose and trehalose-release test. The results indicated that lycopene caused significant membrane damage and inhibited the normal budding process, resulting from the destruction of membrane integrity. The present study indicates that lycopene has considerable antifungal activity, deserving further investigation for clinical applications.

키워드

참고문헌

  1. Alvarez-Peral, F. J., O. Zaragoza, Y. Pedreno, and J. Argüelles. 2002. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148: 2599-2606 https://doi.org/10.1099/00221287-148-8-2599
  2. Amir, H., M. Karas, J. Giat, M. Danilenko, R. Levy, T. Yermiahu, J. Levy, and Y. Sharoni. 1999. Lycopene and 1,25-dihydroxyvitamin D3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells. Nutr. Cancer 33: 105-112 https://doi.org/10.1080/01635589909514756
  3. Cha, D. S. and M. S. Chinnan. 2004. Biopolymer-based antimicrobial packaging: A review. Crit. Rev. Food Sci. Nutr. 44: 223-237 https://doi.org/10.1080/10408690490464276
  4. Cha, J.-D., M.-R. Jeong, S.-I. Jeong, and K.-Y. Lee. 2007. Antibacterial activity of Sophoraflavanone G isolated from the roots of Sophora flavescens. J. Microbiol. Biotechnol. 17: 858-864
  5. Clinical and Laboratory Standards Institute. 2005. Performance standards for antimicrobial susceptibility testing, fifteenth informational supplement, approved standard MS100-S15, CLSI, Wayne, PA
  6. Cohen, M. L. 1992. Epidemiology of drug resistance; implications for a post-antimicrobial era. Science 257: 1050-1055 https://doi.org/10.1126/science.257.5073.1050
  7. Cushnie, T. P. T. and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356 https://doi.org/10.1016/j.ijantimicag.2005.09.002
  8. Dimascio, P., S. Kaiser, and H. Sies. 1989. Lycopene as the most effective biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532-538 https://doi.org/10.1016/0003-9861(89)90467-0
  9. Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll. 2003. New insights on trehalose: A multifunctional molecule. Glycobiology 13: 17R-27R https://doi.org/10.1093/glycob/cwg047
  10. Endo, M., K. Takesako, I. Kato, and H. Yamaguchi. 1997. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 41: 672-676
  11. Fujii, G., J. Chang, T. Coley, and B. Steere. 1997. The formation of amphotericin B ion channels in lipid bilayers. Biochemistry 36: 4959-4968 https://doi.org/10.1021/bi962894z
  12. Gordon, M. A., E. W. Lapa, and M. S. Fitter. 1980. Susceptibility of zoopathogenic fungi to phytoalexins. Antimicrob. Agents Chemother. 17: 120-123 https://doi.org/10.1128/AAC.17.2.120
  13. Grayer, R. J. and J. B. Harborne. 1994. A survey of antifungal compounds from higher plants (1982-1993). Phytochemistry 37: 19-42 https://doi.org/10.1016/0031-9422(94)85005-4
  14. Green, L. J., P. Marder, L. L. Mann, L. C. Chio, and W. L. Current. 1999. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob. Agents Chemother. 43: 830-835
  15. Hartsel, S. and J. Bolard. 1996. Amphotericin B: New life for an old drug. Trends Pharmacol. Sci. 17: 445-449 https://doi.org/10.1016/S0165-6147(96)01012-7
  16. Jung, H. J., K. S. Choi, and D. G. Lee. 2005. Synergistic killing effect of synthetic peptide P20 and cefotaxime on methicillin-resistant nosocomial isolates of Staphylococcus aureus. J. Microbiol. Biotechnol. 15: 1039-1046
  17. Jung, H. J., Y. B. Seu, and D. G. Lee. 2007. Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J. Microbiol. Biotechnol. 17: 1324-1329
  18. Klepser, M. E., E. J. Ernst, R. E. Lewis, M. E. Ernst, and M. A. Pfaller. 1998. Influence of test conditions on antifungal time-kill curve results: Proposal for standardized methods. Antimicrob. Agents Chemother. 42: 1207-1212
  19. Lee, D. G., S. Y. Shin, C. Y. Maeng, Z. Z. Jin, K. L. Kim, and K.-S. Hahm. 1999. Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem. Biophys. Res. Commun. 263: 646-651 https://doi.org/10.1006/bbrc.1999.1428
  20. Lee, D. G., Y. Park, P. I. Kim, H. G. Jeong, E.-R. Woo, and K.-S. Hahm. 2002. Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide. Biochem. Biophys. Res. Commun. 297: 885-889 https://doi.org/10.1016/S0006-291X(02)02267-2
  21. Lee, D. G., Y.-S. Chang, Y. Park, K.-S. Hahm, and E.-R. Woo. 2002. Antimicrobial effects of ocotillone isolated from stem bark of Ailanthus altisshima. J. Microbiol. Biotechnol. 12: 854-857
  22. Lee, M. J., D. H. Bae, D. H. Lee, K. H. Jang, D. H. Oh, and S. D. Ha. 2006. Reduction of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. J. Microbiol. Biotechnol. 16: 639-642
  23. Liao, R. S., R. P. Rennie, and J. A. Talbot. 1999. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43: 1034-1041
  24. Mclain, N., R. Ascanio, C. Baker, R. A. Strohaver, and J. W. Dolan. 2000. Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 44: 2873-2875 https://doi.org/10.1128/AAC.44.10.2873-2875.2000
  25. Nahum, A., K. Hirsch, M. Danilenko, C. K. Watts, O. W. Prall, J. Levy, and Y. Sharoni. 2001. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of $p27^{kip1}$ in the cyclin E-cdk2 complexes. Oncogene 20: 3428-3436 https://doi.org/10.1038/sj.onc.1204452
  26. Oxford, A. E., M. Raistrick, and P. Simonart. 1939. Studies in the biochemistry of microorganisms. Biochem. J. 33: 240-248 https://doi.org/10.1042/bj0330240
  27. Rates, S. M. K. 2001. Plants as source of drugs. Toxicon 39: 603-613 https://doi.org/10.1016/S0041-0101(00)00154-9
  28. Sathiamoorthy, B., P. Gupta, M. Kumar, A. K. Chaturvedi, P. K. Shukla, and R. Maurya. 2007. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett. 17: 239-242 https://doi.org/10.1016/j.bmcl.2006.09.051
  29. Shin, S. Y., J. H. Kang, D. G. Lee, Z. Z. Jin, S. Y. Jang, K. L. Kim, and K.-S. Hahm. 1999. Structure and antibiotic activity of fragment peptides of antifungal protein isolated from Aspergillus giganteus. J. Microbiol. Biotechnol. 9: 276-281
  30. Stahl, W. and H. Sies. 1996. Lycopene: A biologically important carotenoid for humans? Arch. Biochem. Biophys. 336: 1-9 https://doi.org/10.1006/abbi.1996.0525
  31. Sung, W. S., H. J. Jung, I. S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354
  32. Tas, J. and G. Westerneng. 1981. Fundamental aspects of the interaction of propidium diiodide with nuclei acids studied in a model system of polyacrylamide films. J. Histochem. Cytochem. 29: 929-936 https://doi.org/10.1177/29.8.6168679
  33. Wilson, D. F. and B. Chance. 1967. Azide inhibition of mitochondrial electron transport. I. The aerobic steady state of succinate oxidation. Biochim. Biophys. Acta 131: 421-430 https://doi.org/10.1016/0005-2728(67)90002-3