Change of Sludge Consortium in Response to Sequential Adaptation to Benzene, Toluene, and o-Xylene

  • Park, Jae-Yeon (Center for Environmental Technology Research, Energy and Environment Research Division, Korea Institute of Science and Technology) ;
  • Sang, Byoung-In (Center for Environmental Technology Research, Energy and Environment Research Division, Korea Institute of Science and Technology)
  • Published : 2007.11.30

Abstract

Activated sludge was sequentially adapted to benzene, toluene, and o-xylene (BTX) to study the effects on the change of microbial community. Sludge adapted to BTX separately degraded each by various rates in the following order; toluene>o-xylene>benzene. Degradation rates were increased after exposure to repeated spikes of substrates. Eleven different kinds of sludge were prepared by the combination of BTX sequential adaptations. Clustering analyses (Jaccard, Dice, Pearson, and cosine product coefficient and dimensional analysis of MDS and PCA for DGGE patterns) revealed that acclimated sludge had different features from nonacclimated sludge and could be grouped together according to their prior treatment. Benzene- and xylene-adapted sludge communities showed similar profiles. The sludge profile was affected from the point of the final adaptation substrate regardless of the adaptation sequence followed. In the sludge adapted to 50 ppm toluene, Nitrosomonas sp. and bacterium were dominant, but these bands were not dominant in benzene and benzene after toluene adaptations. Instead, Flexibacter sp. was dominant in these cultures. Dechloromonas sp. was dominant in the culture adapted to 50 ppm benzene. Thauera sp. was the main band in the sludge adapted to 50 ppm xylene, but became vaguer as the xylene concentration was increased. Rather, Flexibacter sp. dominated in the sludge adapted to 100 ppm xylene, although not in the culture adapted to 250 ppm xylene. Two bacterial species dominated in the sludge adapted to 250 ppm xylene, and they also existed in the sludge adapted to 250 ppm xylene after toluene and benzene.

Keywords

References

  1. Ahn, J. H., M. S. Kim, M. C. Kim, J. S. Lim, G. T. Lee, J. K. Yun, T. S. Kim, T. S. Kim, and J. O. Ka. 2006. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715
  2. Ahn, J. H., M. C. Kim, H. C. Shin, M. K. Choi, S. S. Yoon, T. S. Kim, H. G. Song, G. H. Lee, and J. O. Ka. 2006. Improvement of PCR amplication bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis, J. Microbiol. Biotechnol. 16: 1561-1569
  3. Alvarez, P. J. J. and T. M. Vogel. 1991. Substrate interactions of benzene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 57: 2981-2985
  4. Boon, N., W. De Windt, W. Verstraete, and E. M. Top. 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol. Ecol. 39: 101-112
  5. Casamayor, E. O., R. Massana, S. Benlloch, L. Ovreas, B. Diez, V. J. Goddard, J. M. Gasol, I. Joint, F. R. Valera, and C. P. Alió. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4: 338-348 https://doi.org/10.1046/j.1462-2920.2002.00297.x
  6. Cavalca, L., E. D. Amico, and V. Andreoni. 2004. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: Diversity of bacterial population and toluene monooxygenase genes. Appl. Microbiol. Biotechnol. 64: 576-587 https://doi.org/10.1007/s00253-003-1449-6
  7. Cho, W. S., E. H. Lee, E. H. Shim, J. S. Kim, H. W. Ryu, and K. S. Cho. 2005. Bacterial communities of biofilms sampled from seepage groundwater contaminated with petroleum oil. J. Microbiol. Biotechnol. 15: 952-964
  8. Deeb, R. A. and L. A. Cohen. 2000. Aerobic biotransformation of gasoline aromatics in multicomponent mixtures. Biorem. J. 4: 171-179 https://doi.org/10.1080/10889860091114211
  9. Deeb, R. A., H. Y. Hu, J. R. Hanson, K. M. Scow, and L. A. Cohen. 2001. Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ. Sci. Technol. 35: 312-317 https://doi.org/10.1021/es001249j
  10. Deeb, R. A., H. Y. Hu, J. R. Hanson, K. M. Scow, and L. A. Cohen. 2001. Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ. Sci. Technol. 35: 312-317 https://doi.org/10.1021/es001249j
  11. EPA. Remedial Investigation Report for the Tennessee Products Site Chattanooga, Tennessee; EPA 7740-064-RTBTWP; U.S. Environmental Protection Agency, Washington, DC, March 1999
  12. Evans, W. C. and G. Fuchs. 1988. Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42: 289-317 https://doi.org/10.1146/annurev.mi.42.100188.001445
  13. Feris, K. P., K. Hristova, B. Gebreyesus, D. Mackay, and K. M. Scow. 2004. A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb. Ecol. 48: 589-600 https://doi.org/10.1007/s00248-004-0001-2
  14. François, A., H. Mathis, D. Godefroy, P. Piveteau, F. Fayolle, and F. Monot. 2002. Biodegradation of methyl tertbutyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl. Environ. Microbiol. 68: 2754-2762 https://doi.org/10.1128/AEM.68.6.2754-2762.2002
  15. Goudar, C. T. and K. A. Strevett. 1998. Comparison of relative rates of BTEX biodegradation using respirometry. J. Ind. Microbiol. Biotechnol. 21: 11-18 https://doi.org/10.1038/sj.jim.2900553
  16. Hane, B. G., K. Jäger, and H. Drexler. 1993. The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14: 967-972 https://doi.org/10.1002/elps.11501401154
  17. Koizumi, Y., J. J. Kelly, T. Nakagawa, H. Urakawa, S. E. Fantroussi, S. A. Muzani, M. Fukui, Y. Urushigawa, and D. A. Stahl. 2002. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Microbiol. Biotechnol. 68: 3215-3225
  18. Lin, B., M. Braster, B. M. van Breukelen, H. W. van Verseveld, H. V. Westerhoff, and W. F. M. Röling. 2005. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl. Environ. Microbiol. 71: 5983-5991 https://doi.org/10.1128/AEM.71.10.5983-5991.2005
  19. Lovley, D. R., J. D. Coates, J. C. Woodward, and E. J. P. Phillips. 1995. Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953-958
  20. Martine, W. R., E. K. Hamann, and S. Hartmans. 1997. Biofiltration of air containing low concentrations of propene using a membrane bioreactor. Biotechnol. Prog. 13: 380-386 https://doi.org/10.1021/bp970038o
  21. McLellan, S. L., A. D. Daniels, and A. K. Salmore. 2003. Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting. Appl. Environ. Microbiol. 69: 2587-2594 https://doi.org/10.1128/AEM.69.5.2587-2594.2003
  22. Muller, R. 1992. Bacterial degradation of xenobiotics, pp. 35-57. In J. C. Fry, G. M. Gadd, R. A. Herbert, C. W. Jones, and I. A. Watson-Craik (eds.), Microbial Control of Pollution. Cambridge University Press, Cambridge
  23. Prenafeta-Boldú, F. X., J. Vervoort, J. T. C. Grotenhuis, and J. W. van Groenestijn. 2002. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophoro sp. strain T1. Appl. Environ. Microbiol. 68: 2660-2665 https://doi.org/10.1128/AEM.68.6.2660-2665.2002
  24. Ralebitso, T. K., W. F. M. Röling, M. Braster, E. Senior, and H. W. van Verseveld. 2000. 16S rRNA-based characterization of BTX-catabolizing microbial associations isolated from a South African sandy soil. Biodegradation 11: 351-357 https://doi.org/10.1023/A:1011611231633
  25. Rooney-Varga, J., R. Anderson, J. L. Fraga, D. Ringelberg, and D. R. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Microbiol. Biotechnol. 65: 3056-3063
  26. Schneegurt, M. A. and C. F. Kulpa Jr. 1998. The application of molecular techniques in environmental biotechnology for monitoring microbial systems. Biotechnol. Appl. Biochem. 27: 73-79 https://doi.org/10.1111/j.1470-8744.1998.tb01377.x
  27. Sigler, W. V., C. Miniaci, and J. Zeyer. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresisbased assessment of bacterial community structure. J. Microbiol. Methods 57: 17-22 https://doi.org/10.1016/j.mimet.2003.11.011
  28. Smalla, K., U. Wachtendorf, H. Heuer, W. T. Liu, and L. J. Forney. 1998. Analysis of Biolog-GN substrate utilization patterns by microbial communities. Appl. Microbiol. Biotechnol. 64: 1220-1225
  29. Smets, B. F. and P. H. Pritchard. 2003. Elucidating the microbial component of natural attenuation. Curr. Opin. Biotechnol. 14: 283-288 https://doi.org/10.1016/S0958-1669(03)00062-4
  30. Solano-Serena, F., R. Marchal, M. Ropars, J. M. Lebeault, and J. P. Vandecasteele. 1999. Biodegradation of gasoline: Kinetics, mass balance and fate of individual hydrocarbons. J. Appl. Microbiol. 86: 1008-1016 https://doi.org/10.1046/j.1365-2672.1999.00782.x
  31. Song, B. K., L. Y. Young, and N. J. Palleroni. 1998. Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int. J. Syst. Bacteriol. 48: 889-894 https://doi.org/10.1099/00207713-48-3-889
  32. Strauss, J. M., K. J. Riedel, and C. A. du Plessis. 2004. Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter. Appl. Microbiol. Biotechnol. 64: 855-861 https://doi.org/10.1007/s00253-003-1483-4
  33. Vanbroekhoven, K., A. Ryugaert, P. Wattiau, R. De Mot, and D. Springael. 2004. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. FEMS Microbiol. Ecol. 50: 37-50 https://doi.org/10.1016/j.femsec.2004.05.007