Isolation and Structural Determination of Squalene Synthase Inhibitor from Prunus mume Fruit

  • Choi, Sung-Won (Department of Food and Culinary Art, Osan College) ;
  • Hur, Nam-Yoon (Department of Food and Culinary Art, Osan College) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, and Medical Research Institute, Pusan National University College of Medicine) ;
  • Kim, Dong-Seob (College of Natural Resources and Life Sciences, Pusan National University) ;
  • Lee, Jae-Kwon (Department of Foods and Biotechnology, Kyonggi University) ;
  • Kim, Dae-Ok (Institute of Life Science and Resources, Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Park, Seung-Kook (Institute of Life Science and Resources, Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Byun-Yong (Institute of Life Science and Resources, Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Baik, Moo-Yeol (Institute of Life Science and Resources, Department of Food Science and Biotechnology, Kyung Hee University)
  • Published : 2007.12.31

Abstract

Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of $C_{16}H_{18}O_9$ based on UV spectrophotometry, $^1H$ and $^{13}C$ NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an $IC_{50}$ level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

Keywords

References

  1. Abe, I., J. C. Tomesch, S. Wattanasin, and G. D. Prestwich. 1993. Inhibitors of squalene biosynthesis and metabolism. Nat. Prod. Rep. 11: 279-293 https://doi.org/10.1039/np9941100279
  2. Agnew, W. S. 1985. Squalene synthetase. Methods Enzymol. 110: 359-375 https://doi.org/10.1016/S0076-6879(85)10094-7
  3. Baxter, A., B. J. Fitzgerald, J. L. Hutson, A. D. McCarthy, J. M. Motteram, B. C. Ross, M. Sapra, M. A. Snowden, N. S. Watson, R. J. Williams, and C. Wright. 1992. Squalestatin, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J. Biol. Chem. 267: 11705-11708
  4. Bergstrom, J. D., M. M. Krutz, D. J. Rew, A. M. Amend, J. D. Karkas, R. D. Bostedor, V. S. Bansal, C. Dufresns, F. L. V. Middleworth, O. D. Hensens, J. M. Liesch, D. L. Zinc, K. E. Wilson, J. Onishi, J. A. Milligan, G. Bills, L. Kaplan, M. O. Nallin, R. G. Jenskins, L. Huang, M. S. Meinz, L. Quinn, R. U. Burg, Y. L. Kong, S. Mochales, M. Mojena, I. Martin, F. Pelaez, M. T. Diez, and A. W. Albert. 1993. Zaragozic acids: A family of metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. USA 90: 80-89
  5. Biller, S. A., C. Forster, E. M. Gordon, T. Harrity, L. C. Rich, J. Marretta, and C. P. Ciosek. Jr. 1991. Isoprenyl phosphinylformates: New inhibitors of squalene synthetase. J. Med. Chem. 34: 1912-1914 https://doi.org/10.1021/jm00110a024
  6. Cho, J.-Y., G. J. Choi, S.-W. Lee, K. S. Jang, H. K. Lim, C. H. Lim, S. O. Lee, K. Y. Cho, and J.-C. Kim. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16: 280-285
  7. Cho, J.-Y., J.-H. Moon, H.-K. Kim, S.-J. Ma, S.-J. Kim, M.- Y. Jang, K. Kawazoe, Y. Takaishi, and K.-H. Park. 2006. Isolation and structural elucidation of antimicrobial compounds from buckwheat hull. J. Microbiol. Biotechnol. 16: 538-542
  8. Choi, S. W., D. S. Kim, N. Y. Hur, C. S. Park, and M. Y. Baik. 2003. Purification and identification of squalene synthase inhibitor isolated from fermented soybean paste. Food Sci. Biotechnol. 14: 89-93
  9. Dawson, M. J., J. E. Farthing, P. S. Marshall, R. F. Middleton, M. J. O'Neill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor, H. G. Wildman, A. D. Buss, D. Langley, and M. V. Hayes. 1992. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J. Antibiot. 45: 639-647 https://doi.org/10.7164/antibiotics.45.639
  10. Feng, R., Y. Lu, L. L. Bowman, Y. Qian, V. Castranova, and M. Ding. 2005. Inhibition of activator protein-1, NFkappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J. Biol. Chem. 280: 27888-27895 https://doi.org/10.1074/jbc.M503347200
  11. Ha, C. G., J. K. Cho, C. H. Lee, Y. G. Chai, Y. A. Ha, and S. H. Shin. 2006. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol. Biotechnol. 16: 1201-1209
  12. Haria, M. and D. Mctavish. 1997. Pravastatin. Drugs 53: 299-336 https://doi.org/10.2165/00003495-199753020-00008
  13. Hiyoshi, H., M. Yanagimachi, M. Ito, I. Ohtsuka, I. Yoshida, T. Saeki, and H. Tanaka. 2000. Effect of ER- 27856, a novel squalene synthase inhibitor, on plasma cholesterol in rhesus monkeys: Comparison with 3-hydroxy- 3-methylglutaryl-CoA reductase inhibitors. J. Lipid Res. 41: 1136-1144
  14. Hiyoshi, H., M. Yanagimachi, M. Ito, T. Saeki, I. Yoshida, T. Okada, H. Ikuta, D. Shinmyo, K. Tanaka, N. Kurusu, and H. Tanaka. 2001. Squalene synthase inhibitors reduce plasma triglyceride through a low-density lipoprotein receptorindependent mechanism. Eur. J. Pharmacol. 431: 345-352 https://doi.org/10.1016/S0014-2999(01)01450-9
  15. Huh, S. J., K. H. Lee, H. S. Yun, D. J. Paik, J. M. Kim, and J. H. Youn. 2007. Functions of metallothionein generating interleukin-10-producing regulatory CD4+ cells potentiate suppression of collagen induced arthritis. J. Microbiol. Biotechnol. 17: 348-358
  16. Ishihara, T., H. Kakuta, H. Moritani, T. Ugawa, S. Sakamoto, S. Tsukamoto, and I. Yanagisawa. 2003. Syntheses of 3-ethylidenequinuclidine derivatives as squalene synthase inhibitors. Part 2: Enzyme inhibition and effects on plasma lipid levels. Bioorg. Med. Chem. 11: 3735-3745 https://doi.org/10.1016/S0968-0896(03)00336-5
  17. Jee, H. J. 1999. Health Foods from Herbs, p. 52. Seoul National University Press, Seoul, Korea
  18. Kasim, S. E., R. C. Leboeuf, S. Khilnani, L. Tallapaka, D. Dayanada, and L. C. Jenk. 1992. Mechanisms of triglyceride-lowering effect of an HMG-CoA reductase inhibitor in a hypertriglyceridemic animal model, the Zucker obese rat. J. Lipid Res. 33: 1-7
  19. Keller, R. K. and F. Vilsaint. 1993. Regulation of isoprenoid metabolism in rat liver: Near constant chain lengths of dolichy phosphate and ubiquinone are maintained during greatly altered rates of cholesterogenesis. Biochim. Biophy. Acta 1170: 20-25
  20. Koo, K.-C., D.-H. Lee, J.-H. Kim, H.-E. Yu, J.-S. Park, and J.-S. Lee. 2006. Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota adiposa. J. Microbiol. Biotechnol. 16: 757- 763
  21. Kuswik, R. G. and H. C. Rilling. 1987. Squalene synthetase. Solubilization and partial purification of squalene synthetase, copurification of presqualene pyrophosphate and squalene synthetase activities. J. Biol. Chem. 262: 1505-1510
  22. Lim, Y.-H., I.-H. Kim, J.-J. Seo, and J.-K. Kim. 2006. Tyrosinase inhibitor from the flowers of Impatiens balsamina. J. Microbiol. Biotechnol. 16: 1977-1983
  23. Lipid Research Clinics. 1984. Lipid research clinics program. J. Am. Med. Assoc. 252: 2545-2548 https://doi.org/10.1001/jama.252.18.2545
  24. McClellan, K. J., L. R. Wiseman, and D. McTavish. 1998. Cerivastatin. Drugs 55: 415-422 https://doi.org/10.2165/00003495-199855030-00009
  25. Nardini, M., F. Natella, V. Gentili, M. Di-Felice, and C. Scaccini. 1997. Effect of caffeic acid dietary supplementation on the antioxidant defense system in rat: An in vivo study. Arch. Biochem. Biophys. 342: 157-160 https://doi.org/10.1006/abbi.1997.9977
  26. Nishimoto, T., Y. Amano, R. Tozawa, E. Ishikawa, Y. Imura, H. Yukimasa, and Y. Sugiyama. 2003. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro. Br. J. Pharmacol. 139: 911-918 https://doi.org/10.1038/sj.bjp.0705332
  27. Park, J. K., H. J. Cho, Y. H. Lim, Y. H. Cho, and C. H. Lee. 2002. Hypocholesterolemic effect of CJ90002 in hamsters: A potent inhibitor for squalene synthase from Paeonia moutan. J. Microbiol. Biotechnol. 12: 222-227
  28. Poulter, C. D. 1991. Biosynthesis of non-head-to-tail terpenes. Formation of 1'-1 and 1'-3 linkages. Acc. Chem. Res. 23: 70-77 https://doi.org/10.1021/ar00171a003
  29. Poulter, C. D. and H. C. Rilling. 1981. Biosynthesis of Isoprenoid Compounds, pp. 413-441. Wiley Publisher, New York, U.S.A
  30. Rodriguez, de Sotillo D. V. and M. Hadley. 2002. Chlorogenic acid modifies plasma and liver concentrations of cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J . Nutr. Biochem. 13: 717-726 https://doi.org/10.1016/S0955-2863(02)00231-0
  31. Shepherd, J., S. M. Cobbe, I. Ford, C. G. Isles, A. R. Lorimer, P. W. MacFarlane, J. H. McKillop, and C. J. Packard. 1995. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 333: 1301-1307 https://doi.org/10.1056/NEJM199511163332001
  32. Scandinavian Simvastatin Survival Study Group. 1994. Randomized trial of cholesterol-lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 344: 1383-1389