Variations in Protein Glycosylation in Hansenula polymorpha Depending on Cell Culture Stage

  • 발행 : 2007.12.31

초록

A simple way to prevent protein hyperglycosylation in Hansenula polymorpha was found. When glucose oxidase from Aspergillus niger and carboxymethyl cellulase from Bacillus subtilis were expressed under the control of an inducible methanol oxidase (MOX) promoter using methanol as a carbon source, hyperglycosylated forms occurred. In contrast, MOX-repressing carbon sources (e.g., glucose, sorbitol, and glycerol) greatly reduced the extent of hyperglycosylation. Carbon source starvation of the cells also reduced the level of glycosylation, which was reversed to hyperglycosylation by the resumption of cell growth. It was concluded that the proteins expressed under actively growing conditions are produced as hyperglycosylated forms, whereas those under slow or nongrowing conditions are as short-glycosylated forms. The prevention of hyperglycosylation in the Hansenula polymorpha expression system constitutes an additional advantage over the traditional Saccharomyces cerevisiae system in recombinant production of glycosylated proteins.

키워드

참고문헌

  1. Agaphonov, M. O., M. Beburov, M. D. Ter-Avanesyan, and V. N. Smirnov. 1995. A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 11: 1241-1247 https://doi.org/10.1002/yea.320111304
  2. Agaphonov, M. O., A. I. Poznyakovski, A. I. Bogdanova, and M. D. Ter-Avanesyan. 1994. Isolation and characterization of the LEU2 gene of Hansenula polymorpha. Yeast 10: 509-513 https://doi.org/10.1002/yea.320100410
  3. Barnett, J. A., R. W. Payne, and D. Yarrow. 1990. Yeasts: Characteristics and Identification, 2nd Edn., Cambridge University Press, Melbourne, Sydney
  4. Boer, P. and E. P. Steyn-Parve. 1966. Isolation and purification of an acid phosphatase from Baker's yeast (Saccharomyces cerevisiae). Biochim. Biophys. Acta 128: 400-402 https://doi.org/10.1016/0926-6593(66)90189-5
  5. Gascon, S. and J. O. Lampen. 1968. Purification of the internal invertase of yeast. J. Biol. Chem. 243: 1567-1572
  6. Grinna, L. S. and J. F. Tschopp. 1989. Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast 5: 107-115 https://doi.org/10.1002/yea.320050206
  7. Hodgkins, M., D. Mead, D. J. Ballance, A. Goodey, and P. Sudbery. 1993. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations. Yeast 9: 625-635 https://doi.org/10.1002/yea.320090609
  8. Hollenberg, C. P. and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8: 554-560 https://doi.org/10.1016/S0958-1669(97)80028-6
  9. Hong, I.-P., S. Anderson, and S.-G Choi. 2006. Evaluation of a new episomal vector based on the GAP promoter for structural genomics in Pichia pastoris. J. Microbiol. Biotechnol. 16: 1362-1368
  10. Jenkins, N., R. B. Parekh, and D. C. James. 1996. Getting the glycosylation right: Implications for the biotechnology industry. Nat. Biotechnol. 14: 975-981 https://doi.org/10.1038/nbt0896-975
  11. Kang, H. A., J. H. Sohn, E. S. Choi, B. H. Chung, M. H. Yu, and S. K. Rhee. 1998. Glycosylation of human alpha 1- antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14: 371-381 https://doi.org/10.1002/(SICI)1097-0061(19980315)14:4<371::AID-YEA231>3.0.CO;2-1
  12. Kapat, A., J. K. Jung, and Y. H. Park. 2001. Enhancement of glucose production in batch cultivation of recombinant Saccharomyces cerevisiae: Optimization of oxygen transfer condition. J. Appl. Microbiol. 90: 216-222 https://doi.org/10.1046/j.1365-2672.2001.01233.x
  13. Kim, S. Y., J. H. Sohn, H. A. Kang, S. K. Yoo, Y. R. Pyun, and E. S. Choi. 2001. Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae MNN9 gene. Yeast 18: 455-461 https://doi.org/10.1002/yea.699
  14. Kukuruzinska, M. A. and K. Lennon-Hopkins. 1999. ALG gene expression and cell cycle progression. Biochim. Biophys. Acta 1426: 359-372 https://doi.org/10.1016/S0304-4165(98)00136-6
  15. Lee, J. W., D. O. Kang, B. Y. Kim, W. K. Oh, T. I. Mheen, Y. R. Pyun, and J. S. Ahn. 2000. Mutagenesis of the glucoamylase signal peptide of Saccharomyces diastaticus and functional analysis in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 193: 7-11 https://doi.org/10.1111/j.1574-6968.2000.tb09394.x
  16. MacKay, V. L., S. K. Welch, M. Y. Insley, T. R. Manney, J. Holly, G. C. Saari, and M. L. Parker. 1988. The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. Proc. Natl. Acad. Sci. USA 85: 55-59
  17. Oh, K. S., O. S. Kwon, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, M. G. Kim, S. K. Rhee, G. Gellissen, and H. A. Kang. 2004. Fabrication of a partial genomic microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation of transcript profiling. J. Microbiol. Biotechnol. 14: 1239-1248
  18. Park, S. H., H. K. Kim, and M. Y. Pack. 1991. Characterization and structure of the cellulase gene of Bacillus subtilis BSE616. Agric. Biol. Chem. 55: 441-448 https://doi.org/10.1271/bbb1961.55.441
  19. Romanos, M. A., C. A. Scorer, and J. J. Clare. 1992. Foreign gene expression in yeast: A review. Yeast 8: 423-488 https://doi.org/10.1002/yea.320080602
  20. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratoty Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  21. Sohn, J. H., E. S. Choi, C. H. Kim, M. O. Agaphonov, M. D. Ter-Avanesyan, J. S. Rhee, and S. K. Rhee. 1996. A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. J. Bacteriol. 178: 4420-4428 https://doi.org/10.1128/jb.178.15.4420-4428.1996
  22. Veale, R. A., M. L. Giuseppin, H. M. van Eijk, P. E. Sudbery, and C. T. Verrips. 1992. Development of a strain of Hansenula polymorpha for the efficient expression of guar alpha-galactosidase [published erratum appears in Yeast 1992 Sep;8(9):813]. Yeast 8: 361-372 https://doi.org/10.1002/yea.320080504
  23. Wirsel, S., A. Lachmund, G. Wildhardt, and E. Ruttkowski. 1989. Three alpha-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization. Mol. Microbiol. 3: 3-14 https://doi.org/10.1111/j.1365-2958.1989.tb00097.x
  24. Yip, C. L., S. K. Welch, F. Klebl, T. Gilbert, P. Seidel, F. J. Grant, P. J. O'Hara, and V. L. MacKay. 1994. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc. Natl. Acad. Sci. USA 91: 2723-2727