Application of Factorial Experimental Designs for Optimization of Cyclosporin A Production by Tolypocladium inflatum in Submerged Culture

  • Abdel-Fattah, Y.R. (Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • Enshasy, H. El (Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • Anwar, M. (Microbiology Department, Faculty of Pharmacy, Alexandria University) ;
  • Omar, H. (Microbiology Department, Faculty of Pharmacy, Alexandria University) ;
  • Abolmagd, E. (Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
  • Published : 2007.12.31

Abstract

A sequential optimization strategy based on statistical experimental designs was employed to enhance the production of cyclosporin A (CyA) by Tolypocladium inflatum DSMZ 915 in a submerged culture. A 2-level Plackett-Burman design was used to screen the bioprocess parameters significantly influencing CyA production. Among the 11 variables tested, sucrose, ammonium sulfate, and soluble starch were selected, owing to their significant positive effect on CyA production. A response surface methodology (RSM) involving a 3-level Box-Behnken design was adopted to acquire the best process conditions. Thus, a polynomial model was created to correlate the relationship between the three variables and the CyA yield, and the optimal combination of the major media constituents for cyclosporin A production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows (g/l): sucrose, 20; starch, 20; and ammonium sulfate, 10. The predicted optimum CyA yield was 113 mg/l, which was 2-fold the amount obtained with the basal medium. Experimental verification of the predicted model resulted in a CyA yield of 110 mg/l, representing 97% of the theoretically calculated yield.

Keywords

References

  1. Abdel-Fattah, Y. R. and A. A. Gaballa. 2006. Synthesis of DNA ladder by polymerase chain reaction and optimization of yield using response surface methodology. Biotechnology 5: 166- 172 https://doi.org/10.3923/biotech.2006.166.172
  2. Abdel-Fattah, Y. R., H. M. Saeed, Y. M. Gohar, and M. A. El-Baz. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Proc. Biochem. 40: 1707-1714
  3. Agathos, S. N., J. W. Marshall, C. Moraiti, R. Parekh, and C. Madhosingh. 1986. Physiological and genetic factors for process development of cyclosporin fermentations. J. Ind. Microbiol. 1: 39-48 https://doi.org/10.1007/BF01569415
  4. Bernard, J. 1986. Cyclosporin: foreward. Prog. Allergy 38: 1-8
  5. Billich, A. and R. Zocher. 1987. Enzymatic synthesis of cyclosporin A. J. Biol. Chem. 262: 17258-17259
  6. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475 https://doi.org/10.2307/1266454
  7. Demain, A., Y. Aharonowitz, and J. Martin. 1983. Metabolic control of secondary metabolic pathways. In: L. Vining (ed.), Biochemistry and Genetics of Commercially Important Antibiotics, Ch. 3. Addison-Wesley, Reading, MA
  8. Dittmann, J., R. W. Wenger, H. Kleinkauf, and A. Lawen. 1994. Mechanism of cyclosporin A biosynthesis: Evidence for synthesis via a single linear undecapeptide precursor. J. Biol. Chem. 269: 2841-2846
  9. Dreyfuss, M., E. Härri, H. Hofmann, H. Kobel, W. Pache, and H. Tscherter. 1976. Cyclosporin A and C. New metabolites from Trichoderma polysporum. Eur. J. Appl. Microbiol. 3: 125-133 https://doi.org/10.1007/BF00928431
  10. Dubois, M., K. Gilles, J. Hamilton, P. Rebers, and F. Smith. 1956. Colorimetric method of determination of sugars and related substances. Anal. Chem. 290: 181-186
  11. Kobel, H. and R. Traber. 1982. Directed biosynthesis of cyclosporins. Eur. J. Appl. Microbiol. Biotechnol. 14: 237-240 https://doi.org/10.1007/BF00498470
  12. Kreuzig, F. 1984. High speed liquid chromatography with conventional instruments for determination of cyclosporin A, B, C, and D in fermentation broth. J. Chromatogr. 290: 181-186 https://doi.org/10.1016/S0021-9673(01)93572-1
  13. Lawen, A. and R. Zocher. 1990. Cyclosporin synthetase, the most complex peptide synthesizing multienzyme so far described. J. Biol. Chem. 265: 11355-11360
  14. Murthy, M. V., E. V. Mohand, and A. K. Sadhukhan. 1999. Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem. 34: 269-280 https://doi.org/10.1016/S0032-9592(98)00095-8
  15. Park, N. S., J. S. Myeong, H.-J. Park, K. Han, S.-N. Kim, and E.-S. Kim. 2005. Characterization and culture optimization of regiospecific cyclosporin hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191
  16. Plackett, R. L. and J. P. Burman. 1946. The design of optimum multi-factorial experiments. Biometrika 33: 305-325 https://doi.org/10.1093/biomet/33.4.305
  17. Rehacek, Z. and Z. De-xiu. 1991. The biochemistry of cyclosporin formation: A review. Process Biochem. 26: 157-166 https://doi.org/10.1016/0032-9592(91)80012-E
  18. Sanket, J., S. Yadav, A. Nerurkar, and A. J. Desai. 2007. Statistical optimization of medium components for the production of biosurfactant by Bacillus lichenifirmis K51. J. Microbiol. Biotechnol. 17: 313-319
  19. Sekar, C. and K. Balaraman. 1998a. Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng. 18: 293-296 https://doi.org/10.1007/s004490050444
  20. Sekar, C. and K. Balaraman. 1998b. Immobilization of the fungus, Tolypocladium sp. for the production of cyclosporin A. Bioprocess Eng. 19: 281-283
  21. Strobel, R. and G. Sullivan. 1999. Experimental design for improvement of fermentations, pp. 80-93. In: A. L. Demain and J. E. Davies (eds.), Manual of Industrial Microbiology and Biotechnology. Washington, ASM Press
  22. Weber, G., K. Schorgendorfer, E. Schneider-Scherzer, and E. Leitner. 1994. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr. Genet. 26: 120-125 https://doi.org/10.1007/BF00313798
  23. Weber, G. and E. Leitner. 1994. Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Curr. Genet. 26: 461-467 https://doi.org/10.1007/BF00309935
  24. Wenger, R. M. 1984. Synthesis of cyclosporin. Helv. Chim. Acta 67: 502-506 https://doi.org/10.1002/hlca.19840670220
  25. Zocher, R., T. Nihira, E. Paul, N. Madry, H. Peeters, H. Kleinkauf, and U. Keller. 1986. Biosynthesis of cyclosporin A: Partial purification and properties of a multifunctional enzyme from Tolypocladium matum. Biochemistry 25: 550-553 https://doi.org/10.1021/bi00351a005