WE AR EREe mocGk

$£12% 6%, 2007. 12, 2007-12-6-1-16

Advanced Disk Block Caching Algorithm for Disk I/0
sub-system

Soo-Mok Jung*, KyungTaeg Rho **

O of
i 5

A hard disk, which can be classified as an external storage is usually capacious and economical.
In spite of the attractive characteristics and efforts on the performance improvement, however, the
operation of the hard disk is apparently slower than a processor and the advancement has also been
stowly conducted since it is based on mechanical process. On the other hand, the advancement of
the processor has been drastically performed as semiconductor technology does. So, disk I/O
sub-system becomes bottleneck of computer systems’ performance. For this reason, the research on
disk I/O sub-system is in progress to improve computer systems performance. In this paper, we
proposed multi-level LRU scheme and then apply it to the computer systems with buffer cache and
disk cache. By applying the proposed scheme to computer systems, the average access time to disk
blocks can be decreased. The efficiency of the proposed algorithm was verified by simulation results.

Abstract

AFEA2RA v RN A e AZAQ F2E zher) RI93Rd gete tade £ An
7HRe] ARATE 2L 71AAQ] B 71 T3 glo] F7194A) wlsled WS- =2l dade] A%
= o) =2lA ol n UxIgt M7l HEA7|&e] W Sudgo] t)e mEd o]RoiXn 9
o g A&e] taa MBI AR AFEA 2R A4 %o W3 (bottle neck)E 22711
o AFEAzEe] daa & MuA AR A5e ANGtes HFEA 2B AA AANAS 28e
€ Q77F ol FoA R Sitk. B =RelMe Hrlrt Beg @ /sl B UAABES uinAAlg baz
AN EEH0Z A5l OAIRE FAHIANE U0 AFHA2EY %S e A" ¢
22)%< multi-level LRU 71 Asign o2 simAAe oz ANE 7ixe Az Hgsad.
AlEdeld g B3l Ak kel A% Frleigith

» Keyword : Disk I/0 sub-system, Buffer cache, Disk cache, LRU, sLRU, multi-level LRU

cHIHE Y= c WAKR - A
BT 0 2007.11.2, AAKY ¢ 2007.12.3, AAE Y : 2007.12.15.
* Sahmyook University, Professor, ** Eulji University., Professor

140 &H AFEHRES HOGE(2007.

=

12.)

| . Introduction

The speed improvement of a processor in computer
systems is achieved very quickly in consequence of
semiconductor technology improvement. On the other
hand, the speed improvement of a hard disk is not
fast because the operation of a hard disk is based on
mechanical process. The speed difference of a
processor and a hard disk is more serious. So, disk
I/O sub-system becomes bottleneck of computer
systems’ performance. For this reason, the research
on disk I/O sub-system is in progress to improve
computer systems’ performance.

The access time to read data form disk is composed
of three items. One is seek time for disk head to move
on the track in which the specified sector resides.
Another one is rotational delay time for disk head to
move the beginning point of the specified sector. The
other is transfer time for disk head to pass the
specified sector to read the data form the sector.
These processes are based on mechanical process such
as disk head moving or disk plate rotation. So, the
performance improvement of a disk is achieved
restrictively, For this limitation, disk block caching
schemes were studied to improve the performance of
disk sub-system. If a disk block which will be used by
processor is stored in cache, processor can read the
disk block directly from cache instead of disk which
has very large access time when processor needs a
disk block. So, the
degradation cased by the speed difference between

problem of performance

processor and disk can be solved efficiently. As an
example in UNIX, a part of main memory is used as
buffer cache in which disk blocks are stored.(1, 2)
Disk blocks used by processor are stored in buffer
cache. When processor needs the disk block again,
processor reads the disk block directly from buffer
cache. When there is not the disk block requested by
processor in buffer cache, disk read operation happen.
At this time, the disk block which is read from disk is
stored in buffer cache, after that the disk block is

serviced to processor. So, if buffer cache is used, disk
read operation decreased and computer systems’
performance improvement can be achieved.

Data General Corporation developed disk controller
with disk cache and I/O processor. In this system, I/O
operation can be done without processor’s interference
and can be done side by side processor.(4) Processor,
main memory, and disk controller in the system with
buffer cache and disk cache are connected by system
bus as shown in figure 1.

When processor requests a specific disk block,
UNIX operating system investigates the disk block in
buffer cache. If there is the disk block in buffer
cache, processor reads the disk block from buffer
cache.

If there is not the disk block in buffer cache,
UNIX operating system requests the disk block to
disk controller. Disk controller investigates disk
cache to check whether the disk block exists in buffer
cache or not. When the disk block exists in disk
cache, the requested disk block is stored in buffer
cache and then the disk block is serviced to
processor. At this time, disk access is unnecessary.

So, computer systems’ performance is improved.
When the disk block does not exist in disk cache,
disk controller executes disk 1/0. In this kind of
systems, disk blocks are stored concurrently in
buffer cache and disk cache. So, computer systems’
performance degenerates. (5] Also cache management
scheme affects the number of disk access and
computer systems performance. Segmented Least
Recently Used (sLRU) scheme [6) was proposed to
efficiently, and many cache

manage cache

management schemes were proposed to limit
duplicated storage of disk block(7-12].

DCD(disk caching disk)(13) was proposed. Buffer
cache replacement algorithm such as LIRS(Low
Inter-reference Recency Set)(14) was proposed, and
ULC(Unified and Level-aware Caching)(15) was
proposed for a large client/server cluster system, in
which file blocks are cached in a multi-level storage
hierarchy. uCache algorithm(16) and Counter-based

d23a &8 JEA2dL 93 /ANE d&3 85 AN ¢xngds 141

L2 Cache Algorithms(17) were

proposed to improve performance of L2 caches in

Replacement

multi-level cache hierarchies for multiple clients.

Processor

I

System Bus

Main Memory Disk Controller

Disk Cache

k Disk

Figure 1. System configuration with buffer cache and disk
T2 1. HupFiA el CIATIINE 71Xl AlAl FHT

Buffer Cache

Dis

To reduce the speed gap between RAM and disks,
a new disk organization called

In this paper, we proposed multi-level LRU
scheme which is the improved version of sLRU and
we applied the proposed scheme to the system with
buffer cache and disk cache to increase disk 1I/0
sub-systems’ performance by removing duplicated
disk blocks between buffer cache and disk cache. The
efficiency of the proposed algorithm was verified by
simulation results.

This correspondence is organized as follows: In
section 2, segmented Least Recently Used algorithm is
reviewed briefly. In section 3, the proposed algorithm
is presented. In section 4, experimental results are
shown. Finally, we conclude this correspondence in
section 5.

I1. Segmented Least Recently Used
Algorithm(sLRU)

A Digk block which is referenced by process is
stored in cache and then it is provided to processor.
If a disk block is referenced again within a certain
time, there is a tendency of the disk block is used
repeatedly. If a disk block is not referenced within a
certain time, there is a tendency of the disk block is
Therefore, if a disk block

which is reused within a certain time is stored

not used repeatedly.(9)

continually in cache, computer systems’ performance
improvement can be achieved by supplying the disk
block to processor from cache without disk access. By
using this characteristic, sSLRU cache management
scheme was proposed. sLRU removes disk blocks
form cache if the disk blocks are not reused within a
certain time. Applying sLRU cache management
scheme, disk blocks which were used only one time
as in the case of sequential reference can be removed
quickly form cache. So, the disk blocks which have
high possibility of reusing can be maintained in
cache for a long time, cache hit ratio will be

increased, and computer systems’ performance
improvement can be achieved.

To store and manage separately disk blocks which
are used only one time and several times, cache is
divided into two segments in sLRU scheme, one is
Protected segment and the other is Probationary
Protected

segment are linked as shown in figure 2. In sLRU

segment. segment and Probationary
scheme, when cache miss occurs, disk block is read
in MRU end of
Probationary segment. (1) When cache hit occurs, the
specified disk block moves to MRU end of Protected
segment. (2) (3) If the disk block is not reused during

it is maintained in Probationary segment, it moves

from disk and it is stored

toward LRU end of Probationary segment and it is
discarded at last.(5)

In sLRU, the disk blocks in Protected segment are
reused by processor at least one time. And the disk
blocks in Probationary segment are used only one
time by processor or they are came from Protected
segment because they are not reused for a long time.
A boundary pointer is used in sLRU scheme to divide

142 WE A FEFREE HGE(2007. 12)

cache into Protected segment and Probationary
segment, and it is set to point the middle of the list.
Each cache line has 1 bit flag to represent which
segment involves the cache line.

When a disk block is inserted between MRU end of
Probationary segment and LRU end of Protected
segment due to cache miss, the pointer is adjusted to
point the new disk block and the flag is set to show
the disk block is in Probationary segment. So, the
disk blocks which have high possibility of reusing

can be maintained in cache for a long time.

[£)]

Protcted Prokedionsry.
Segment Segment
— L M L
[f » R R i (5}
E U Uis u u
6]
(2
Figure 2. sLRU scheme
2 2. sLRU 71H
Protected m Probationary
Segment ‘ Segment
—p M L Pl M L
R] p P R P (5)
i U U 1] U
3
2)
M L
(8 ——m A R——p ®
U 9]

6}

Figure 3. The operation of buffer cache and disk
cache when sLRU scheme is applied to
buffer cache
T3 3. sLRU 7[o| Hmjzirlel| X2l 7,
HTHAIR} ClATTHAlS] St

In a system with buffer cache and disk cache, a
disk management scheme in which sLRU scheme is
applied to buffer cache and reused disk block is
removed from disk cache was proposed as shown in
figure 3.(12]

By using this algorithm, disk block duplication
can be reduced and a disk block which has high
possibility of reusing can be maintained in cache for
a long time,

The operation of this algorithm is as follows. A
disk block which is referenced at first is stored in
MRU end of Probationary segment of buffer cache
and MRU end of disk cache simultaneously.(1)(6)
When a disk block is reused during it is stored in
Probationary segment{4t), the disk block moves to
MRU end of Protected segment(2) and it is removed
When a disk
stored in

simultaneously from disk cache.(7)
block is not
Probationary segment, the disk block in buffer cache
moves from MRU end of Probationary segment to
LRU end of it, and then it is discarded at the time of
one disk block is read form disk owing to cache

reused during it is

miss.(5) Similarly, a disk block in disk cache moves
from MRU end toward LRU end, and after it arrives
at LRU end it is discarded at the time of one disk
block is read from disk owing to cache miss.(8) At is
determined by the size of Probationary segment and
the ratio of disk block entry into cache.

lll. Advanced Disk Block Caching
Algorithm for Disk I/O sub—-system

As shown in figure 3, a disk block which is entered
into buffer cache moves to MRU end of Protected
segment when it is reused and then it stays in
Protected segment. And then the disk block moves
toward LRU end of Probationary segment and then it
is removed finally at LRU end of Probationary
segment. In this case, a disk block which is reused
only one time is treated as same with a disk block
which is reused more than two times. So, sLRU
scheme can not regulate the residing time of a disk
block within cache according to the pattern of disk
block reuse. Therefore, sSLRU scheme does not reflect
the pattern of disk block reuse. Also, a disk block is
stored in buffer cache and disk cache in duplicate
until it is removed from disk cache when it is reused
by processor. In proposed multi-level LRU, disk
blocks are managed in cache which is divided into
Probationary segment, Transitional segment, and

fuf
>
W
jiaca
e
)
>,
14
>,
>
o
o
o
214‘
)
[
i
o
[~
1y
1111
.
)
o>
1o
=
k)
N

143

Protected segment like as shown in figure 4 to solve
this problem. A disk block is stored at MRU end of
Transitional segment when it is referenced by
processor at first.(1) When the disk block is reused
by processor during it exists in Transitional segment,
the disk block moves to MRU end of Protected
segment.(2) At this time, all the blocks in Protected
segment move toward Transitional segment.(4) If a
disk block is reused by processor during it exists in
Protected segment, it moves to MRU end of the
Protected segment.(3) If a disk block is not reused by
processor during it exists in Protected segment, it
moves gradually toward Transttional segment.(4)

(1)
Protected Transitional
Segment Segment (6)
M L M T e M Ll o
R R R R R Rl—»
U u L U U
4)

r’ @ @

Prokationary
Segment

Figure 4. Multi-level LRU scheme
T2 4. e LRU 714

The procedure of multi-level MRU as shown in
figure 4 is as follows:
step 1: while (disk block is requested by
processor?) {

step 2: if (the disk block is in cache?)

execute disk_block hit_routine:
step 3: else execute disk_block_miss_routine:
step 4:)

disk_block_hit_routine
step 1t if (the disk block is in Probationary
segment?)
execute Proba_routine:
step 21 else if (it is in Transitional segment?)
execute Trans routine:
step 3: else execute Prote_routine:

Proba_routine
step 1: shift right all the blocks in

Transitional segment and the blocks
from MRU end to the previous one of
the specified disk block in Probationary
segment.

step 2: move the specified disk block to MRU

end of Transitional segment

Trans_routine

step 1: shift right all the blocks in Protected
segment and the blocks from MRU
end to the previous one of the
specified disk block in Transitional
segment

step 2! move the specified disk block to MRU

end of Protected segment

Prote_routine

step 1: shift right the disk blocks from MRU
end to the previous one of the
specified disk block in Protected
Segment,

step 2! move the specified disk block to MRU

end of Protected segment

The cache hit ratio of the proposed multi-level
LRU scheme increases because the disk block is
reused more frequently the disk block resides in
cache longer. So, the requested disk block is serviced
directly from cache to processor without disk access.
Therefore, computer systems’ performance can be
improved.

The proposed multi-level LRU scheme was applied
to the system with buffer cache and disk cache as
shown in figure 5 to limit the disk block duplication
and to enhance the cache hit ratio.

The procedure of figure 5 is as follows:

step 1' while(!disk block is requested by

processor?)

step 2: if (is it in Protected segment?)

execute Prote routine:

step 3: else if (it is in Transitional segment?)

execute Trans_routine:

144 &E AFEHEREE HIGE(2007. 12)

step 4: else if (it is in Probationary segment?)
execute Prob_routine;

step 5 else if (it is in disk cache?)
execute Disk_cache_routine;

step 6 else execute Disk_block_insert_routine;

step 7: goto step 1

Prote_routine, Trans_routine, and Proba routine
describe the
Disk_cache_routine describe the operation of disk

operation of buffer cache and

cache.

Disk_cache_routine

step 1: shift right from MRU end to the
previous one of the specified disk block
in disk cache

step 2: move the specified disk block to MRU
end of
Probationary segment

Disk block_insert_routine

step 1: shift right all the blocks of
Transitional segment, Probationary
segment, and disk cache(the disk
block at LRU end of disk cache is
removed)

step 2: The requested disk block which is
read from disk is stored at MRU end
of Transitional segment

Cache hit ratio increases if multi-level LRU
scheme is applied to the system with buffer cache
and disk cache to eliminate disk block duplication
and to reside a disk block longer in cache as it is
referenced more frequently. So, the number of disk
access is minimized and average disk block access
computer systems’

time is reduced. Therefore,

performance is increased.

4]

Protected Transitional
Segment Segment (6
M L M LI & M Ll o
Buffer u R R R » R R
Cache u 1] il u u u
—I (€] (2 Probationary
Segment
((B)
Disk M L
Cache R R
u ul @

Figure 5. The operation of buffer cache and disk cache
with multi-level LRU scheme
33 5. ol LRU 71Me =&st A2, HEgiARL Ciaggiie]
=xt

IV. Experimental Results

We executed simulation to evaluate the performance
of the proposed algorithm which is multi-level LRU
scheme is applied to the system with buffer cache
and disk cache to improve disk I/O sub-systems’
performance by removing duplicated blocks between
buffer cache and disk cache.

The simulation environment is as follows. The
size of buffer cache and disk cache is 8MB and 4MB
respectively. The size of Protected segment and
Probationary segment is 4MB respectively when
sLRU scheme is applied to the system with buffer
cache and disk cache. The size of Probationary
segment, Transitional segment, and Protected
segment is 2.5MB, 3MB, 2.5MB respectively. We
executed simulation for 2000 disk blocks and the
disk block size is SKB. We assumed that disk blocks
don’t change. So, disk block update to disk is
unnecessary when a disk block is replaced. To
generate the sequence of requested disk blocks, the
number of reference for each disk block is generated
by random function as 1 to 20, the interval of reuse
for each disk block is generated by weighted random
function as 1 to 100. The total number of reference
to disk block was 20.857 times.

The simulation results are shown in table 1 where
multi-level LRU and sLRU scheme were applied to

°
>
lu
jincA
o
i)
=

3
[
ol
tio
o
St
=)
rx
e,
o
>
{u
4
Jfu
X
oX
114
4
o,
oy

145

the system with buffer cache and disk cache. Cache
hit ratio is the percentage of the serviced number of
disk blocks from cache to the number of requested
disk blocks by processor.

Table 1. Cache hit ratio for the multi-level LRU and sLRU
algorithm are applied to the system with buffer cache
and disk cache
E 1. HuFiAel CASFIANE TIRI= AlARI Clob) LRU 7|z
sLRUZ[Ho| MEH AR 7I| HZg

27.5% |60.4%
F;‘g;‘;ff (5743/2085 | (1259
buffer 7) 8 | 75.7%
cache L 32.9% /| (15794
sLRU Probationary (6855/2685 20857| /
segment 7) 20857)
disk cache 15.3%(3196/20857)
18.0%
Protected
segment (375%2085 71.7%
(1495
i 30.1%
. | buffer | Transitional 1 91.9%
n]l:\}(t;l cache| segment (627%2085 /(19164
5y e e NV
Probationary 977 857
segment (492%2085
disk cache 20.2%(4213/20857)

As shown in table 1, the proposed algorithm can
increase the hit ratio of the previous algorithm in
which sLRU scheme is used by 18.7% in buffer cache.
This result comes from that a disk block resides longer
in cache as it is referenced more frequently by using
multi-level LRU scheme. In disk cache, the hit ratio is
increased by 31.8%. This result comes from that many
disk blocks are reside in disk cache owing to disk
block duplication is eliminated between buffer cache
and disk cache. If disk block can be serviced from
cache to processor without disk access, the number of
disk access can be reduced, and computer systems’
performance improvement can be achieved. As shown
in table 1, by using the proposed algorithm, disk
access is minimized because more disk blocks can be
serviced form cache without disk access. So, a process
can be executed rapidly. Therefore, computer systems’
performance can be improved by using the proposed
algorithm.

V. Conclusions

We proposed multi-level LRU scheme which is
improved version of sLRU and applied it to computer
systems with buffer cache and disk cache. By using
the proposed algorithm, disk block duplication is
eliminated and the disk block exists longer in cache
as it is referenced more frequently. So, cache hit
ratio is increased. In our simulation, when applying
the proposed algorithm, buffer cache hit ratio is
increased by 18.7% and disk cache hit ratio is
increased by 31.8% then sLRU scheme is used. As
hit ratio is increased, the more disk blocks are
serviced to processor from cache without disk access.
So, average disk block access time is reduced and a
process can be executed rapidly. Although disk I/O
sub-system is the bottleneck of computer systems’
performance, computer systems’ performance can be
improved by using the proposed algorithm.

ikl
ek

i

(1) C. P. Grossman, "Cache-DASD storage design for
improving system performance,” IBM Systems
Journal, vol. 24, no. 3/4, pp. 316-334. 1985.

{2) P. J. Jalics and D. R. McIntyre, “Caching and
Other Disk Access Avoidance Techniques on
Personal Computers,” Communications of the
ACM, vol. 32, no. 2, pp. 246-255, Feb. 1989.

(3] M. J Bach, "The Design of the UNIX Operating
System,” Prentice-Hall, Englewood Cliffs, NJ.
1986.

(4) Data General Corporation, “Configuring and
Managing a CLARIiION Disk-Array Storage
System,” 1994.

(5) B. McNutt, “1/0 subsystem configurations for ESA:
New roles for processor storage,” IBM Systems
Journal, vol. 32, no. 2, pp. 252-264, 1993.

(6) R. Karedla, J. S. Love, and B. G. Wherry,
“Caching Strategies to Improve Disk System
Performance,” Computer, vol. 27, no. 3, pp.
38-46, March 1994.

146 BE ATEHERES w2007, 12)

{7) D. M. Muntz and P. Honeyman, "Multi-level
Caching in Distributed File Systems,” In
Proceedings of the 1992 Winter USENIX
Conference, pp. 305-313, 1992.

(8) J. T. Robinson and N. V. Devarakonda, “Data
Cache Management Using Frequency-Based
Replacement,” In Proceedings of the ACM
SIGMETRICS Conference, pp. 134-142, 1990.

(9) E. J. O'Neil, P. E. O'Neil, and G. Weikum, "The
LRU-K Page Replacement Algorithm for Database
Disk Buffering,” In Proceedings of the 1993 ACM
SIGMOD Conference, pp. 297-306, 1993.

(10} P. Cao, E. W. Felton, and K. Li,
“Application-Controlled File Caching Policies.”
In Proceedings of the Summer 1994 USENIX
Conference, pp. 171-182, Jun. 1994.

(11) M. D. Dahlin, R. Y. Wang. T. E. Anderson, and
D. A. Patterson, "Cooperative Caching: Using
Remote Client Memory to Improve File System
Performance,” First Symposium on Operating
Systems Design and Implementation, pp.
267-280, Nov. 1994.

(12) D. H. Lee, S. H. Noh, S. L. Min, and Y. K.
Cho, "Efficient Cache Management Schemes for
Reducing Duplication Caching between Buffer
and Disk Caches,” Journal of KISS(A), vol. 22,
no. 10, october 1995.

(13) Yiming Hu, Oing Yang, "A New Hierarchical
Disk Architecture,” IEEE Micro, Vol. 18, Issue
6, pp. 64-76, Nov. 1998,

(14) S. Jiang and X. Zhang. "LIRS: An efficient low
interreference recency set replacement policy to
improve buffer cache performance,” In Proc.
ACM SIGMETRICS, pp. 31-42, 2002.

(15) 8. Jiang and X. Zhang, "ULC: A file block
placement and

replacement protocol to

effectively exploit hierarchical locality in
multi-level buffer caches,” In Proceedings of the
24th International Conference on Distributed
Computing Systems (ICDCS'04), Mar, 2004.

(16) Li Ou Xubin Ben He, Martha J. Kosa, Stephen

L. Scott, “A Unified Multiple-level Cache for

High Performance Storage Systems,” In
Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, Vol. 00 (MASCOTS '05), Sep. 2005.
{17) Mazen Kharbutli, Yan Solihin, “"Counter-Based
Cache Replacement Algorithms,” In Proceedings

of the 2005 International Conference on

Computer Design (ICCD '05), Oct. 2005.

Soo-Mok Jung
1984 Kyungpook National
University (B.E.)
1986 Kyungpook National
University (M.E)
2002 Korea University
(Ph.D.)

Associate Professor

Department. of Computer Science
Sahmyook University

Jjungsm@syu.ac.kr

(Research interests): computer
systems, multimedia, wireless

network

Kyung-Taeg Rho

1986: Chung Ang
University(B. E.)

1989: New Jersey Institute
of Technology(M.E.)

2007: Korea University
(Ph. D. Candidate)

Assistant Professor

Department of Medical
Computer Science

Eulji University

rho@eulji.ac.kr

(Research interests): mobile

communication, wireless sensor

network, computer systems

