ATYE YN AdEe] W) 215 SoelE

The Message Scheduling Algorithm of Connector in the Software
Composition

A 8 g
HWa-Young Jeong

2

gr

AXIE 7] AzEgo] AdelN, AXIE ZE3 Ao]2E v Fo3lth tFEe 7IE WHEL, 79H

7t 973 Z2ARA ZZRPO)OIL oHIE T2 M & B

I olde] AXYEE Ao]d BE FA AdS 2330

2ey olE AYe AXUES} AJHE Fool G AXUENA B 23S By U AS AT 3 AYH
N T 24¢ A2l 4 e BTk BEHY UElEo)s o] Bastt B =RNE AUEAA WAA FE o
83 4348 2489 LuAFE AVHAL 018 Aste] WAXE YNFoE AF R IALES L5k WA

g ARSI

Abstract

In the component based software development, it is very importont fo interface between modules of component. Aimost of
exisfing method, Connectors are dedl with dl communication channels befween two o more componentsfinterfaces by
RPC(Remote procedure call) and event call. But these process has limits when component send a lot of request call to other
component through connector, That is, we need more efficient inferface method that connector can process multi request call.
In this paper, | propose inferaction scheduling algorithm using message queue in the connector. For this purpose, | use message

buffer which operate to save and load message temporarily.

er keywords: CBD, Component compasition, Process scheduling algorithm

1. Introduction

Software reliability engineering is an important
aspect of many system development efforts, and
consequently there has been a great deal of research
in this area 1. Component ~ Based
Development(CBD)[2,34] technique designs and
embodies component, independent unit parts module,
or completes whole system by assembling and
composing the existing developed component with
connector or interface. Software Architectures(SAs)
are recognized to be a powerful tool in meeting

* ZAY Adgn nPE Zag
hyjeong@khu.ac.kr
[2007/03/27 F-31 - 2007/04/05 AR} - 2007/08/19 AAIAE]

these requirements. Also, it emerged to structure
complex software systems, exploiting commonalities
in specific domains organizations and providing a
high-level system description. Software architecture
is described in terms of components, connectors,
and their configurations. From operational aspect of
CBD and SAs point of view, all the approaches
agree that dynamic aspects are orthogonal to all the
views and they aliow for analysis and validation of
architectural choices. The most important thing is
how to interface between components efficiently. In
this question, we have to consider the factors as
following words. What would a special purpose
connector specification model look like? Can
connectors be reused mnot just to compose

gk Qe HEES| (8H65)

87

HEGE BHOIM Fdelo] HAIX] AHER g12|F

components into (sub)systems, but also to compose
more complex connectors? What composition
operators are necessary and sufficient to allow
connector composition? Is there a set of primitive
connectors out of which “wall interesting or useful”
connectors can be constructed by those connector
composition operators? How can one characterize
interesting and useful in this context?[13].

In this paper, I would like to address these
questions and show it process as a language for
compositional construction. So I propose message
based interface process method between software
components, efficiently. In this research, request call
and response result of component treat as a
message in the connector. This architecture has two
threads and one port which are in charge of
transmission in and out. For efficient handling of
message, I use message buffer which operate to
save and load message temporarily. Proposal method
has been successfully evaluated and operated on
application in this paper.

2. Component compositions

2.1 A software component

Traditional software development methods focus
on software correctness, introducing performance
issues later in the development process. But, in
recent years, increasingly systems are implemented
as compositions of independently-developed
components that must be integrated into working
systems using various interaction mechanisms,
compose with one another, modify, and maintain[9].
Component software emerged from object-oriented
programming as a way to apply compositional
engineering to the construction of complex

software[5]. At the moment various commercial

vendors provide components as building blocks for
industrial systems, trying to establish component
marketplaces[6]. Components provide a higher level
of design abstraction than objects. It can be
composed together by binding required to provide
services to form a higher-level component. The
structure of a composition is in the focus of
architectures[7]. In the
composition, a component can interact with its

software component
environment through operations at identified access
points, called interfaces. The visibility of the
interfaces of a sub-component, in and out of the
enclosing component, is determined by the controller
of the enclosing component[11].

2.2 Connector interaction for request
call and response

A connector is an abstraction capturing
between
clearly separating communication from the business

communicationfinteraction components,
logic of the components. Connectors can address
several software dévelopment issues ranging from
application distribution including data transfer,
conversion and support for various middleware, to
interface adaptation and access coordination[7]. By
referring to architectural elements components and
connectors, [10] make use of the definitions as
Weakly-Closed System, Closed System,
Weakly-Open System, Open System. Almost of this
method handle the request message with FIFO
method according to role composition of
connector[8]. In the basic architecture of component
composition system[12], coordination = means
connector interaction and autonomous component
system means software component include business
logics. Composite system send request call to

component system and received response process(or

88

2007. 12

HEHE BdolM AU tAX| A7 B 2T2|F

service) result from component system. At this time,
coordination(or connector) perform interaction
between composite system and component system
by RPC call and FIFO method. [14] was described
that Components are composite objects with ports,
interacting with one another either through event
triggers or method invocations. Each component can
have the following types of ports:

Publish Port to publish events.

Subscribe Port to subscribe to events.

Receptacle to issue method invocations.

¢ Facet to accept method invocations.

°
Secondary

Figure 1. The connector extension for
multiplex connection.

Wright has been studied as like the structure in
Figare 1 for the multiplex connection of
components[15]. In this structure, the requesting
service process was petformed by connector playing
a role as like channel in the occurrence of request
of component. Also, In the [16] research, they
study the multiple choice and process the in side of
the dynamic software architectures, the component
instead of web service.

3. Connector’s interaction
process scheduling in the
component composition

3.1 Design of
architecture

connector interaction

In this research, I designed connector interaction

architecture for efficient handling between composite
system and component. Composite system and each
component have two ports, In port for request call
and Out port for response result. This architecture
for message handling in connector has two thread
processes and messages as shown Figure 2.

Figure 2. Proposed architecture of connector
interaction

In this method, composite system send request
call to connector for component process. Message
controller in connector receives this request and
command request Message Buffer to save request
call information as a message. And next time,
Message controller operates to start Request Thread
for request call transmission to component. Finally,
Request Thread is able to send composite system’s
request call to component with request message. In
side of Response process of conmnector interaction,
this process is analogous with request call process
handling. When component finish the process(or
business logic) successfully, it send to acknowledge
response call to Message controller in connector.
Then Message controller operates to start Response
Thread. Response Thread sends response result of
component process with response message to
composite syster.

3.2 Interaction process scheduling
algorithm in connector

According to above this architecture, I can

ok

=2 olEld Bl (863)

89

HEUE oM AHYEQf ofAlx| 27 FY 2T2E

implement the interaction algorithm in connector.
Composite system which was described total system
construct algorithm, as shown Figure 3. In this
construction, Composition() perform to link
connected component to composite system using
linkcomponent() function in connector.

Class CompositeSystem
Algorithm main()
Begin
Call InitialSystem()
Call Binding()
Call ServiceStart()
End
Algorithm InitialSystem()
Begin
Search for sub component
Create home interface object of component
Create remote interface object of component
End
Algorithm Composition()
Begin
Veomp : connected component,
for i<-0 to {number of connected component}

do
Call Connector.linkcomponent(this, call
component, comp)
End
Algorithm ServiceStart()
Begin

Component service request start to connector
End

Figure 3. Composite system algorithm

Figure 4 shows the connector include interaction
algorithm between composite system and connected
components. Actually, roles() perform to link
connected component using Bind() and create
RequestThread and ResponseThread for message
handling. RequestThread and ResponseThread
operate message handling from MessageBuffer.
MessageController and MessageBuffer has inherited
connector. MessageController perform to save

request message to message buffer and order to

start RequestThread and ResponseThread.
MessageBuffer perform to save and load message,
request and response.

Class Connector
Algorithm roles()
Input parameter => object composite system,
object call component, string component name
Begin
Bind(composite system, call component)
Create lookup table with component name
Create RequestThread and ResponseThread
End
Algorithm RequestThread()
Begin
Wait for component ready
VcompName : component name in lookup table
for i«-0 to {number of connected component}
do
ComponentName = Search compName

ComponentService =

MessageBuffer. GetRequestMessage(ComponentName)
Send ComponentService to component
End
Algorithm ResponseThread()
Begin
MessageBuffer. ResponseMessage(response result
object)
Wait for Composite system ready
W compName : component name in lookup table
for i«0 to {number of connected component}
do
ComponentName = Search compName
ComponentResult =

MessageBuffer.GetResponseMessage(ComponentName)
Send ComponentResult to composite system
End

Class MessageController extends Connector

Algorithm Start()

Begin
MessageBuffer.RequestMessage(request call object)
Start super.RequestThread
Wait for Acknowledge response call
if(receive Acknowledge response call from
component)
then

90

2007. 12

HEHE FdofM e tAX] 2HEY ¢12F

Start super.ResponseThread
End

Class MessageBuffer extends Connector
Algorithm RequestMessage()
Input parameter => object request call object
Begin
Check message queue status
Save request message to message queue
End
Algorithm GetRequestMessage()
Input parameter => string request component name
Output parameter => Object request call object
Begin
Search for request call object with request
component name which in lookup table
Return request call object
End

Algorithm ResponseMessage()
Input parameter => object response result object
Begin
Check message queue status
Save response message to message queue
End
Algorithm GetResponseMessage()
Input parameter => string response component name
Output parameter => Object response call object
Begin
Search for response object with response
component name which in Jookup table
Return response call object
End

Figure 4. Interaction process scheduling
algorithm in connector

4. Application

In this section, I applied a simple application that
uses proposal techniques. For this application, I use
Java language(EJB: Enterprise Java Beans) on
Windows XP. Figure 5 shows response result after
check stock list in which stock process component
perform. Quantity means a residuary stock of each
company.

Fig 5. Response result after check stock list
process

5. Conclusion

It is important that connector interaction operate
request and response call between connected
components, efficiently. In this paper, I propose
interaction process scheduling algorithm which used
in connector. For efficient handling of request and
response call, I used two messages, request and
response call, in message buffer. Also, for a
message handling, I used two Thread process,
RequestThread
controller in connector performs to control message
buffer and Thread process. More flexible of
components is possible due to parallel structure of

and ResponseThread. = Message

components with message in the middle and not
having sequenced hierarchical structure. For
application example, I implement and apply proposal
method. In application, target system was stock
management system. At this result, this system
operates customer and stock service, successfully.

For future work, I will use this architecture to
enhance software system reliability using software
architecture models. That is, I have to consider
many other situations as component process problem
itself and interface problem in connector.

a1

HEAE FMoIM el oAX| A#EE 2n2|F

References

[1] Genaina Rodrigues, David Rosenblum, and

Sebastian Uchitel, “Using Scenarios to Predict

the Reliability of Concurrent Component-Based

Software Systems”, FASE 2005, LNCS 3442,

2005.

Stojanovic Z., A. Dahanayake, “Components

and Viewpoints as integrated Separations of

Concerns in system Designing”, International

Conference on Aspect-Oriented Software

Development, April, 2002.

[3] Miguel Gouldo, “CBSE: a Quantitative
Approach”, Proceeding of ECOOP 2003, 2003.

[4] Murali Sitaraman, Timothy J. Long, Etc., “A
formal approach to component-based software
engineering: education and evaluation”,
Proceedings of the 23rd Internmational
Conference on Software Engineering, IEEE
Computer Society, 2003.

[5] A. Bailly, M. Clerbout, and 1. Simplot-Ryl.
“Component Composition Preserving
Behavioural Contracts Based on Communication

Tenth International
Conference on Implementation and Application
of Automata (CIAA 2005), LNCS 3845, 2005.

[6] Andreas Speck, Elke Pulvermiiller, Michael
Jerger, Bogdan Franczyk, “Component
Composition Validation”, International Journal
of Applied Mathematics and Computer Science
12(4), December, 2002.

[7] Stanislav ~ ViSnovsky, “Modeling Software
Components Using Behavior Protocols”, Ph.D
Thesis, Department of Software Engineering of
Charles University, 2002.

[8] Toannis Georgiadis, “Self-Organising Distributed
Component Software Architecture”, University
of London, Ph.D Thesis, 2002.

2

d

Traces”. Proc. of

[9] Bridget Spitznagel and David Garlan, “A
Compositional ~ Formalization of Connector
Wrappers”, Proceedings of the 2003
International ~ Conference @ on Software
Engineering, 2003.

[10] Mauro Caporuscio, Paola Inverardi, and Patrizio
Pelliccione, “Formal Analysis of Architectural
Patterns”, First European Workshop on
Software Architecture (EWSA 2004). St
Andrews, Scotland, UK. May, 2004.

[11] E. Bruneton, T. Coupaye, and J. B. Stefani,
“Recursive and Dynamic Software Composition
with Sharing”, Seventh International Workshop
on Component-Oriented Programming
(WCOP02), June, 2002.

[12] Ricardo de MendonAS$a da Silva, Paulo Asterio
de C. Guerra, and CecAlia M. F. Rubira,
“Component Integration wusing Composition
Contracts with Exception = Handling”,
Object-Oriented Technology: ECOOP 2003
Workshop, LNCS 3013, July, 2003.

[13] Fathad Arbab, "“Coordination for Component
Composition”, Electronic Notes in Theoretical
Computer Science, FACS 2005, 2005.

[14] Zonghua Gu, Kang G. Shin, “Model-Checking
of Component-Based Event-Driven Real-Time
Embedded Software”, Proceedings of the Eighth
IEEE International Symposium on
Object-Oriented Real-Time Distributed
Computing, IEEE Computer society, 2005.

[15] Robert Allen, Rémi Douence, and David
Garlan, “Specifying and Analyzing Dynamic
Software Architectures”, Proc. of 1998
Conference on Fundamental Approaches to
Software Engineering, 1998.

[16] Jeremy S. Bradbury, James R. Cordy, Juergen
Dingel, Michel Wermelinger, “A Survey of
SelfManagement in Dynamic Software

92

2007. 12

HEIE SHolM AHYE 2 HAR] 2AEE 2T F

Architecture ~ Specifications”, Proc. of the
International Workshop on Self-Managed
System, ACM. 2004.

OMANZHMNO

H 3 Y(HWa-Young Jeong)

1991 Edvhetal 8tu&3 SAEMD

19943 73|t AAA e} AL

20043 A3t AAA 280} F8eAL

2000~2005'd o Fdledistal AYFFSAR ARG 2us
2005~8A 78| cieta weFsHE 2us

BHEoE: ALES O] T, HIIE 2H/FA, 4 7
E-mail : hyjeong@Xkhu.ac.kr

re
El
_;10

3= oleful HEaE (6263) .

