References
- Andrzej, G. and Dugundji, j. (2003). Fixed Point Theory. Springer-Verlag, New York
- Chen, D. S. and Jain, R C. (1994). Robust back propagation learning algorithm for function approximation. IEEE Transactions on Neural Networks, 5, 467-479 https://doi.org/10.1109/72.286917
- Freeman, J. A. (1994). Simulating Neural Networks with Mathematica. Addison-Wiley, New York
- Hampel, F. R, Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Addison-Wiley, New York
- Hecht-Nielsen, R.(1990). Neurocomputing. Addison-Wesley, Reading, MA
- Lee, C.-C., Chung, P.-C., Tsai, J.-R, and Chang, C.-I. (1999). Robust radial basis function neural networks. IEEE Transactions on System, Man and Cybernetics, 29, 674-685
- Liano, K. (1996). Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks, 7, 246-250 https://doi.org/10.1109/72.478411
- Moody, J. and Darken, C. (1989). Fast learning in networks for function interpolation. Neural Computation, 3, 281-284
- Saha, A., Wu, C. L. and Tang, D. S. (1993). Approximation, dimension reduction and nonconvex optimization using linear superposition of Gaussians. IEEE Transaction on Computers, 42, 1222-1233 https://doi.org/10.1109/12.257708