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Multinomial Kernel Logistic Regression via Bound
Optimization Approach*

Jooyong Shim} Dug Hun Hong? Dal Ho Kim® and Changha Hwang?

Abstract

Multinomial logistic regression is probably the most popular represen-
tative of probabilistic discriminative classifiers for multiclass classification
problems. In this paper, a kernel variant of multinomial logistic regression
is proposed by combining a Newton’s method with a bound optimization
approach. This formulation allows us to apply highly efficient approxima-
tion methods that effectively overcomes conceptual and numerical problems
of standard multiclass kernel classifiers. We also provide the approximate
cross validation (ACV) method for choosing the hyperparameters which af-
fect the performance of the proposed approach. Experimental results are
then presented to indicate the performance of the proposed procedure.

Keywords: Approximate cross validation; hyperparameters; multinomial logistic regres-
sion; support vector machine.

1. Introduction

Classifiers can be partitioned into two main groups, namely informative and
discriminative ones. Classical linear discriminant analysis (LDA) is the most
popular informative method, whereas logistic regression is the most popular dis-
criminative one. In general, logistic regression is more robust than LDA, since
less assumptions about the classes are made. An important advantage of logistic
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regression is that it outputs an estimate of the probability that an object belongs
to each of the possible classes. A different approach to discriminative classifica-
tion is the support vector machine (SVM) by Vapnik (1995, 1998). Compared
to logistic regression, the main drawback of the SVM is the absence of proba-
bilistic outputs. The most popular methods for multiclass classification in recent
machine learning research are variants on SVMs and boosting, sometimes com-
bined with error-correcting code approaches. Rifkin and Klautau (2004) provide
a review.

In this paper we focus on multinomial generalization of logistic regression and
on a nonlinear “kernelized” variant of multinomial logistic regression. Using a
bound optimization approach as in Krishnapuram et al. (2005), we derive a fast
exact algorithm for learning multinomial kernel logistic regression (MKLR). Con-
cerning multiclass problems, the availability of probabilistic outputs allows us to
overcome the main drawback of the SVM: in the usual SVM framework, a multi-
class problem with m classes is treated as a series of binary classification methods
such as the one-vs-one and one-vs-all, or the single machine type methods which
attempt to construct a multiclass classifier by solving a single optimization prob-
lem. There is no substantial agreement on which method is the best one for the
multiclass problem. See for details Weston and Watkins (1998), Suykens and
Vandewalle (1999) and Rifkin and Klautau (2004). We also present the approx-
imate cross validation (ACV) method for choosing the hyperparameters which
affect the performance of the proposed MKLR.

2. Multinomial Logistic Regression

Let € = (x1,...,24)T be an input vector to be classified. We encode the fact
that an input vector belongs to a class k € {1,...,m} by a m-dimensional 0/1
valued vector y = (y1,...,ym)T, where g = 1 and all other coordinates are 0.

Multinomial logistic regression is a conditional probability model of the form

T
exp(wy, )
Py = 1z, w) = : (2.1)
S exp(w] x)
parameterized by the dm-dimensional vector w = (w7,...,wl)T, where wy, is

the d-dimensional weight vector corresponding to class k and the superscript 7
denotes vector or matrix transpose. This is a direct generalization of binary
logistic regression to the multiclass case. Since the probabilities must sum to
one: » pv, P(yx = l|z,w) = 1, the weight vector for one of the classes need
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not be estimated. Without loss of generality, we thus set w,, = 0 and the only
parameters to be learned are the weight vectors wy for k € {1,...,m — 1}. For
the remainder of the paper, we use w to denote the d(m — 1)-dimensional vector
of parameters to be learned.

Classification of a new observation is based on the vector of conditional prob-
ability estimates produced by the model. In this paper we simply assign the class
with the highest conditional probability estimate:

y(@) = argmax P(yy = 1|z). (2.2)

Consider a set of training examples D = {(z;,y;)}, T € X C R%, y; € R™
Maximum likelihood estimation of the parameters w is equivalent to minimizing
the negative log-likelihood function:

n m—1 n m—1
fw) =— Z Z Yikw} Ti + Zlog <1 + Z exp(w{:cﬁ) , (2.3)
=1 k=1 =1 k=1

which is typically accomplished using Newton’s method, also known, in this case,
as iteratively reweighted least squares (IRWLS). Although there are other meth-
ods for performing this minimization, none clearly outperforms IRWLS (Minka,
2003). See Bohning (1992) and Krishnapuram et al. (2005) for details of esti-
mating w in multinomial logistic regression.

3. Multinomial Kernel Logistic Regression

A nonlinear form of multinomial logistic regression, known as multinomial
kernel logistic regression, can be obtained via the so-called “kernel trick” , whereby
a conventional multinomial logistic regression model is constructed in a high
dimensional feature space induced by a Mercer (1909)’s kernel. More formally,
given training data, D = {(z;,9;)}7,, @ € X C R%,y, € R™, a feature space
F (¢ : X — F), is defined by a kernel function, K : X x X — R, that evaluates
the inner product between the images of input vectors in the feature space, ¢.e.
K(xy, ;) = ¢(xk)T d(xz;). The kernel function used here is the Gaussian kernel,

1
K(wk,ml) = exp <—; |(Bk - .’13[“2) y

where o2 is the kernel parameter.
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The negative log-likelihood function of the multinomial logistic regression
model constructed in the feature space is given as follows:

n m-—1 m—1
=3 v + Zlog (1 + ) exp 77m)> , ik = Wi ¢(@:) (3.1)

i=1 k=1 i=1 k=1

Often, model penalization improves generalization performance and so we employ
the following penalty to the negative log-likelihood function during model fitting:

n m-1 m
£(n, Z Z YikMik + Zlog (1 + Z exp(Nik ) Z lwkll?, (3.2)
i=1 k=1 k=

where ) is a penalty parameter which controls the trade-off between the goodness-
of-fit on the data and the smoothness.

The representation theorem (Kimeldorf and Wahba, 1971) guarantees that
the minimizer of the penalized negative log-likelihood (3.2) to be nix = K7F oy,
where K; is the ith column of the kernel matrix K with elements K (x, ;). Now
the problem becomes obtaining the (m — 1)n-dimensional vector o to minimize

n m-—1 n m—1
lla) = - Z Z i KT o + Zlog (1 + Z exp (K;‘Pak))
i=1 k=1 i=1 k=1
A m~1
+3 of Koy, (3.3)
k=1
where « is denoted as (af,...,al ;)T.

Let p;j = exp (KT o;) /(1 + ST exp (KT ay)) and then let us define p; =
(pi1y--->Pim—1)T and py = (P1x,...,Pnk)T. Then, using Newton’s method, the
optimal o can be obtained iteratively as follows:

att) = o® — (H* + %K*)—la, (3.4)
where K* = diag(K,...,K), and H* and G are defined as
pY diag(p.(f)) ]
H* = K*|diag : - [dlag( (¢ )) . ,diag(p.(,t%_l ] K,
p(rtr)L 1 dla,g(p(t) ]
y.(l) p,(f) 1 o‘gt)
G=K"|- : + : 3 :
(t) (t) ®

ym 1 pm— am—l
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Here y.;, is defined as ¥, = (y1%, . - ., Yn)T. It is noted that H* can be rewritten
as

n

H* = (diag(p\?) - pVp"") ® KKT, (35)
t=1
where otimes is the Kronecker matrix product.
As shown in Bohning (1992) and Krishnapuram et al. (2005), the Hessian of

the negative log-likelihood is upper bounded by a positive definite matrix that
does not depend on a,

n
(I-11"/m)® ) K.K! = B*.

i=1

H*

NJI!—'

Here, A < B means A — B is negative semidefinite. Thus, using the bound
optimization technique, we have a simple Newton’s method for a,

ot — o® _ (B 4 % K)lG. (3.6)

Using upper bound matrix B*, we do not need to compute Hessian at each itera-
tion, which yields a fast algorithm for the multinomial kernel logistic regression.

4. Approximate Cross Validation

Model selection, the process of determining the optimal regularization and
kernel parameters, is a central issue in fitting kernel machines. The goal of
model selection is to identify the model that will yield the best generalization
performance. In this section, we present a novel approximation to the leave-
one-out (LOO) error estimator that is an important statistical tool for assessing
generalization performance of the multinomial kernel logistic regression.

Define the cross validation (CV) function as

n m-—1 n
CV(O) ==Y wanl” + Y b(ns),
=1 k=1 i=1

where @ is a set of hyperparameters and b(n,.) = log(1 + 37! exp(nix)) with
i = (Mits -y Mim—-1)T. The CV function can be rewritten as

m—1

=-> yzkmk+zb(m +Zyz ),

i=1 k=1 i=1
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where n (7711 ,nf2 l), . ,nzm 1)T l) K( z)Toz,(C 2 K( = =(K(z1, z;)
oo K(®io1, 25), K(Tig1, i), - . ., K (@, :cz)) and aé Y is obtained by minimiz-
ing L(ax) without the ith observation.

Let = ("7’:1;’ 7"7 m— 1)Tand y= (y JERRE ’y ‘m— 1)TWhere %= Mk - - - ,nnk)T
and ¥ = (Y1k, -, Ynk)’, and let 59 be the n{m — 1) x 1 vector con51stmg of
Y., replaced the ith element with p(,c | For example, (-1 = (pg1 ), Yal, - - -, Ynl,

(-1) (-1) =(=1) — (DT (—))T
Pia Y223 Yn2s s Pl 15 Y2m—1, - Ynm—1) " . Let 779 = (g Vinly 7,
n(ml)l) where n_(k Q- (n(kz), ..,nnki))T. Then the penalized negative log-

likelihood can be rewritten as
N - A -
L(g,7) = —§"n+b@) + §nT2*n,

where 3* is the block diagonal matrix of ¥ which satisfies ||wi||? = 0/, .. We
also have L(y( 9, %) replacing § by §¢?.

By leave-one-out lemma of Craven and Wahba(1979), the minimizer of L((~?
77) with respect to 77 will be 17( 9, Thus, from the first order Taylor expansion,
we obtain

AL(g ), 7))

0=

an—?
oL(y,n) 0L, 7° PLE°,7°) s -
— (’!{ 77)+ ( . )( (=3 _ ) + Ey~;7)(y( )_y)
on 8178 dyon
8L ~0’~0 i 5 s ~
0+ LX) oo _ 5y - 159 - g)
onm

= (W(@H) + AT (7 — 7) — 159 — g),

where (%, 7°) is a point between (§,7) and (§(9,7(=9). Approximate it by
(4,7), then we have ‘

=7 = (W@) + 037 (G - 377) = (W +nx2) @ - §7Y),
where

P1 diag(p.1)
W = diag : — : x [diag(p.y), ..., diag(p.,_1)]
pm 1 diag(p.p,,-1)
= {Wwhiym- ke 1 with n x n matrices W* as elements.
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Since H = (W +nAX*)™1 = {Hkl}kl | with n x n matrices H* as elements,
we have, fori=1,2,...,n,

m —n{ Y~ HO(y, —p{7Y), (41)

where H® = {HEm™ ke 1 is a (m—1) x (m — 1) matrix. By the first order Taylor
expansion, we have

v~ = ;. — ) + (ps. — PV
_ ob(n;)  Ob(n' ™)
= (y; —p;.) + ( o, o,
~ (y; — pi.) + WO, — ), (4.2)

where W = {wk i ! isa (m—1) x (m — 1) matrix. From (4.1) and (4.2),
we have 7, — ( )~ ~ (I - HOWO-1HO @y —p.).
Hence, the AC’V is given as follows:

n

ACV(0) =Y (—yln, +b(n,))

i=1

+> Yl (I - HOWO) T HO(y, —p,). (4.3)
p=1

5. Numerical Studies

We illustrate the performance of the proposed MKLR through three real
data sets (New Thyroid, Wine and Glass) available from UCI Machine Learning
Repository (Blake and Merz, 1998). These data sets are briefly described in Table
5.1. We repeat the procedure 50 times and compare the misclassification error
rates for the MKLR, pairwise and one-vs-all nonlinear SVCs. The experiments
are conducted in MATLAB environment over Pentium IV at 2.0GHz. The RBF
kernel is used for these data sets. For each data set the optimal values of the
kernel parameter o2 and the regularization parameter \ are obtained by ACV
function for the MKLR and by GACV function (Wahba et al., 1999) for pairwise
and one-vs-all nonlinear SVCs.

The averages and boxplots of 50 misclassification error rates by three methods
are shown in Table 5.2 and Figure 5.1, respectively. We can see that the MKLR
provides better classification performance than pairwise and one-vs-all nonlinear
SVCs for three data sets.
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Table 5.1: Sizes of training and test data sets

Jooyong Shim, Dug Hun Hong, Dal Ho Kim and Changha Hwang

No. of classes | No. of input variables | Training data | Test data
New Thyroid 3 5 143 72
Wine 3 12 119 59
Glass 6 9 143 71
Table 5.2: Misclassification error rates
New Thyroid | Wine | Glass
MKLR 0.0764 0.0267 | 0.3479
Pairwise SVC 0.3189 0.0354 | 0.6732
One-vs-all SVC 0.3389 0.0369 | 0.3893
Table 5.3: Average CPU times for training
New Thyroid | Wine | Glass
MKLR 0.1716 0.0759 | 0.6675
Pairwise SVC 0.3000 0.3772 | 1.4734
One-vs-all SVC 0.8144 0.0882 | 0.3653
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Figure 5.1: Boxplots of 50 misclassification error rates (1: MKLR, 2: Pairwise

SVC, 3: One-vs-all SVC)
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We also compare CPU times of the MKLR, pairwise and one-vs-all nonlinear
SVCs computed by the built-in function of MATLAB. The averages of 50 CPU
times in seconds for multiclassification by three methods are shown in Table 5.3,
which indicate that the MKLR tends to be faster than pairwise nonlinear SVC.

6. Concluding Remarks

In this paper, we proposed the MKLR for multiclassification and obtained
ACYV function for the model selection. By using ACV function the model selection
becomes easier and faster than that by a leave-one-out cross validation. Through
three examples we showed that the MKLR provides the satisfying results and is
attractive approach for multiclassification problem. We found that the MKLR
takes less computing time than pairwise nonlinear SVC when being trained with

fixed parameter values and then computing misclassification error rates for test
data.
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